The geometric genus and Seiberg–Witten invariant of Newton nondegenerate surface singularities

ション ふゆ く 山 マ チャット しょうくしゃ

PhD thesis Baldur Sigurðsson

 $f(x) = x_1^4 + x_1^3 x_2^2 + x_2^{10} + x_1^2 x_3^3 + x_2^3 x_3^4 + x_3^8 = 0.$

Computation sequences

Definition

Assume given a resolution graph G for a singularity (X, 0). Let $Z \in L$ be an effective cycle. A computation sequence for Z is a sequence Z_0, \ldots, Z_k so that $Z_0 = 0$, $Z_k = Z$ and for each *i* we have a $v(i) \in \mathcal{V}$ so that $Z_{i+1} = Z_i + E_{v(i)}$. Given such a computation sequence, its continuation to infinity is the sequence $(Z_i)_{i=0}^{\infty}$ recursively defined by $Z_{i+1} = Z_i + E_{v(i)}$ where we extend v to \mathbb{N} by v(i') = v(i) if $i' \equiv i \pmod{k}$.

Computation sequences

Theorem

Assume that each component E_v of the exceptional divisor is a rational curve and that (X,0) is Gorenstein. Let $Z \in L$ be an effective cycle and $(Z_i)_{i=0}^k$ a computation sequence for Z. Then

$$h_Z \le \sum_{i=0}^{k-1} \max\{0, (-Z_i, E_{v(i)}) + 1\}$$
(1)

and we have an equality if and only if the natural maps $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(-Z_i)) \to H^0(E_{\nu(i)}, \mathcal{O}_{E_{\nu(i)}}(-Z_i))$ are surjective for all *i*.

Computation sequences and the geometric genus

In fact, let $H(t) = \sum_{l \in L} h_l t^l$ be the *Hilbert series* associated to the resolution $\tilde{X} \to X$, that is

$$h_l = \dim_{\mathbb{C}} rac{H^0(ilde{X}, \mathcal{O}_{ ilde{X}})}{H^0(ilde{X}, \mathcal{O}_{ ilde{X}}(-l))}.$$

Then, the bound

$$\dim_{\mathbb{C}} \frac{H^0(\tilde{X},\mathcal{O}_{\tilde{X}}(-Z_i))}{H^0(\tilde{X},\mathcal{O}_{\tilde{X}}(-Z_{i+1}))} \leq \max\{0,(-Z_i,E_{\nu(i)})+1\}$$

follows from standard methods.

Theorem We have

$$p_g = h_{Z_K}$$

ション ふゆ く 山 マ チャット しょうくしゃ

where Z_K denotes the anticanonical cycle.

A computation sequence for Z_K

In the case of a Newton nondegenerate singularity, we construct a computation sequence $(Z_i)_{i=0}^k$ for the anticanonical cycle Z_K and a partition $(P_i)_{i=0}^k$ of the set of monomials x^p whose multiplicities along the exceptional divisor of \tilde{X} are bounded by Z_K and prove

$$\dim_{\mathbb{C}} \frac{H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(-Z_i))}{H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(-Z_{i+1}))} = |P_i| = \max\{0, (-Z_i, E_{\nu(i)}) + 1\}.$$

The first equality is proved using a lemma of Ebeling and Gusein-Zade. For the second one, we prove a formula for the number of integral points in a dilated integral polygon in terms of its support functions. Then we show that the set P_i is of this form, and that the sum of support functions relates to the intersection number $(-Z_i, E_{v(i)})$.

This computation sequence can be explicitly computed from the minimal good resolution graph of (X, 0), or, equivalently, the minimal plumbing graph for the link.

The Newton filtration

The Newton Filtration is a filtration of $\mathcal{O}_{\mathbb{C}^3,0}$ on one hand, and of $\mathcal{O}_{X,0} = \mathcal{O}_{\mathbb{C}^3,0}/(f)$ on the other hand. The associated Poincaré series satisfy

$$P^{\mathcal{A}}_{\mathbb{C}^3}(t) = \sum_{p\in\mathbb{N}^3} t^{\ell_f(p)}, \quad P^{\mathcal{A}}_X(t) = (1-t)P^{\mathcal{A}}_{\mathbb{C}^3}(t)$$

where ℓ_f is the concave function on $\mathbb{R}^3_{\geq 0}$ taking the value 1 on the Newton diagram, and restricting to a linear function on each ray from the origin. The nonpositive part of the spectrum $\operatorname{Sp}_{\leq 0}(f, 0)$ and the geometric cenus can be calculated from $P_X(t)$.

(日) (伊) (日) (日) (日) (0) (0)

An infinite computation sequence

A similar computation sequence $(Z_i)_{i=0}^{\infty}$ is constructed, in this case we obtain a partition $(P_i)_{i=0}^{\infty}$ of all monomials, or \mathbb{N}^3 . For each *i*, we have a rational number r_i so that $\ell_f(p) = r_i$ for all $p \in P_i$.

Theorem

$$P_X^{\mathcal{A}}(t) = \sum_{i=0}^{\infty} \max\{0, (-Z_i, E_{v(i)}) + 1\} t^{r_i}.$$

This computation sequence can not be calculated directly from the link as the previous one. The necessary ingredient is the multiplicities of the function $x_1x_2x_3$ along the components of the exceptional divisor of the resolution $\tilde{X} \to X$.

The zeta function is is a formal powerseries $Z_0(t) = \sum_{l \in L} z_l t^l$ defined in terms of a resolution graph of (X, 0). It is therefore a *topological* invariant. We define the *counting function* $Q_0(t) = \sum_{l \in L} q_l t^l$ by setting

$$q_I = \sum \left\{ z_I \mid I' \in L, \ I' \not\geq I \right\}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Analytic and topological series

The zeta- and counting functions are motivated by the following facts. The *Poincaré series* associated with the resolution $\tilde{X} \to X$ is defined as $P(t) = -H(t) \prod_{\nu} (1 - t^{-1}) = \sum_{l \in L} p_l t^l$. The Hilbert series is then recovered from the Poincaré series by a formula analogous to the definition of the counting function: $h_l = \sum_{l' \geq l} p_l$ (Note that this is not a straight forward result, since there are elements in $\mathbb{Z}[[t^L]]$ killed by $1 - t_{\nu}^{-1}$).

(日) (伊) (日) (日) (日) (0) (0)

Theorem (Némethi)

If (X, 0) is a splice quotient singularity, then $Z_0(t) = P(t)$.

The Seiberg–Witten invariants

The Seiberg–Witten invariants are numbers $\mathbf{sw}_M(\sigma)$ associated to any spin^c structure σ on a three dimensional manifold. Being the link of a complex space, the link is equipped with the *canonical* spin^c structure σ_{can} . The above analogies between H(t) and Q(t), along with the following result, show a strong tie between the Seiberg–Witten invariant and the geometric genus.

Theorem

$$\mathsf{sw}_M(\sigma_{ ext{can}}) - rac{Z_{\mathcal{K}} + |\mathcal{V}|}{8} = q_{Z_{\mathcal{K}}}.$$

The Seiberg–Witten invariant conjecture

The above formula for p_g was obtained by showing that for each i we have $h_{Z_{i+1}} - h_{Z_i} = \max\{0, (Z_i, E_{v(i)}) + 1\}$, and then taking sum over i. A similar approach works for the Seiberg–Witten invariant, proving the Seiberg–Witten invariant conjecture of Némethi and Nicolaescu in this case.

 \cap

Theorem

Let $(Z_i)_{i=0}^k$ be the computation sequence for Z_K constructed above. Then, for each i

$$q_{Z_{i+1}} - q_{Z_i} = \max\{0, (Z_i, E_{v(i)}) + 1\}.$$

In particular,

$$\mathsf{sw}_M(\sigma_{ ext{can}}) - rac{Z_{\mathcal{K}} + |\mathcal{V}|}{8} = p_g.$$

Thank you!

- András Némethi,
- András Stipsicz,
- Patrick Popescu-Pampu,
- László Tamás,
- Central European University,

・ロト ・ 日 ・ モート ・ 田 ・ うへで

- Rényi Alfréd institute,
- Audience,
- Many more . . .