The geometric genus and Seiberg-Witten invariant of Newton nondegenerate surface singularities

PhD thesis
Baldur Sigurðsson

Computation sequences

Definition

Assume given a resolution graph G for a singularity $(X, 0)$. Let $Z \in L$ be an effective cycle. A computation sequence for Z is a sequence Z_{0}, \ldots, Z_{k} so that $Z_{0}=0, Z_{k}=Z$ and for each i we have a $v(i) \in \mathcal{V}$ so that $Z_{i+1}=Z_{i}+E_{v(i)}$. Given such a computation sequence, its continuation to infinity is the sequence $\left(Z_{i}\right)_{i=0}^{\infty}$ recursively defined by $Z_{i+1}=Z_{i}+E_{v(i)}$ where we extend v to \mathbb{N} by $v\left(i^{\prime}\right)=v(i)$ if $i^{\prime} \equiv i(\bmod k)$.

Computation sequences

Theorem
Assume that each component E_{v} of the exceptional divisor is a rational curve and that $(X, 0)$ is Gorenstein. Let $Z \in L$ be an effective cycle and $\left(Z_{i}\right)_{i=0}^{k}$ a computation sequence for Z. Then

$$
\begin{equation*}
h_{Z} \leq \sum_{i=0}^{k-1} \max \left\{0,\left(-Z_{i}, E_{v(i)}\right)+1\right\} \tag{1}
\end{equation*}
$$

and we have an equality if and only if the natural maps $H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\left(-Z_{i}\right)\right) \rightarrow H^{0}\left(E_{v(i)}, \mathcal{O}_{E_{v(i)}}\left(-Z_{i}\right)\right)$ are surjective for all i.

Computation sequences and the geometric genus

In fact, let $H(t)=\sum_{l \in L} h_{l} t^{\prime}$ be the Hilbert series associated to the resolution $\tilde{X} \rightarrow X$, that is

$$
h_{l}=\operatorname{dim}_{\mathbb{C}} \frac{H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)}{H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}(-I)\right)} .
$$

Then, the bound

$$
\operatorname{dim}_{\mathbb{C}} \frac{H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\left(-Z_{i}\right)\right.}{H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\left(-Z_{i+1}\right)\right)} \leq \max \left\{0,\left(-Z_{i}, E_{v(i)}\right)+1\right\}
$$

follows from standard methods.
Theorem
We have

$$
p_{g}=h_{Z_{K}}
$$

where Z_{K} denotes the anticanonical cycle.

A computation sequence for Z_{K}

In the case of a Newton nondegenerate singularity, we construct a computation sequence $\left(Z_{i}\right)_{i=0}^{k}$ for the anticanonical cycle Z_{K} and a partition $\left(P_{i}\right)_{i=0}^{k}$ of the set of monomials x^{p} whose multiplicities along the exceptional divisor of \tilde{X} are bounded by Z_{K} and prove

$$
\operatorname{dim}_{\mathbb{C}} \frac{H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\left(-Z_{i}\right)\right)}{H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\left(-Z_{i+1}\right)\right)}=\left|P_{i}\right|=\max \left\{0,\left(-Z_{i}, E_{\vee(i)}\right)+1\right\} .
$$

The first equality is proved using a lemma of Ebeling and Gusein-Zade. For the second one, we prove a formula for the number of integral points in a dilated integral polygon in terms of its support functions. Then we show that the set P_{i} is of this form, and that the sum of support functions relates to the intersection number ($-Z_{i}, E_{v(i)}$).
This computation sequence can be explicitly computed from the minimal good resolution graph of $(X, 0)$, or, equivalently, the minimal plumbing graph for the link.

The Newton filtration

The Newton Filtration is a filtration of $\mathcal{O}_{\mathbb{C}^{3}, 0}$ on one hand, and of $\mathcal{O}_{X, 0}=\mathcal{O}_{\mathbb{C}^{3}, 0} /(f)$ on the other hand. The associated Poincaré series satisfy

$$
P_{\mathbb{C}^{3}}^{\mathcal{A}}(t)=\sum_{p \in \mathbb{N}^{3}} t^{\ell_{f}(p)}, \quad P_{X}^{\mathcal{A}}(t)=(1-t) P_{\mathbb{C}^{3}}^{\mathcal{A}}(t)
$$

where ℓ_{f} is the concave function on $\mathbb{R}_{\geq 0}^{3}$ taking the value 1 on the Newton diagram, and restricting to a linear function on each ray from the origin. The nonpositive part of the spectrum $\operatorname{Sp}_{\leq 0}(f, 0)$ and the geometric cenus can be calculated from $P_{X}(t)$.

An infinite computation sequence

A similar computation sequence $\left(Z_{i}\right)_{i=0}^{\infty}$ is constructed, in this case we obtain a partition $\left(P_{i}\right)_{i=0}^{\infty}$ of all monomials, or \mathbb{N}^{3}. For each i, we have a rational number r_{i} so that $\ell_{f}(p)=r_{i}$ for all $p \in P_{i}$.
Theorem

$$
P_{X}^{\mathcal{A}}(t)=\sum_{i=0}^{\infty} \max \left\{0,\left(-Z_{i}, E_{v(i)}\right)+1\right\} t^{r_{i}}
$$

This computation sequence can not be calculated directly from the link as the previous one. The necessary ingredient is the multiplicities of the function $x_{1} x_{2} x_{3}$ along the components of the exceptional divisor of the resolution $\tilde{X} \rightarrow X$.

The zeta function and the counting function

The zeta function is is a formal powerseries $Z_{0}(t)=\sum_{l \in L} z / t^{\prime}$ defined in terms of a resolution graph of $(X, 0)$. It is therefore a topological invariant. We define the counting function $Q_{0}(t)=\sum_{l \in L} q_{l} t^{\prime}$ by setting

$$
q_{I}=\sum\left\{z_{I} \mid I^{\prime} \in L, I^{\prime} \nsupseteq I\right\} .
$$

Analytic and topological series

The zeta- and counting functions are motivated by the following facts. The Poincaré series associated with the resolution $\tilde{X} \rightarrow X$ is defined as $P(t)=-H(t) \prod_{v}\left(1-t^{-1}\right)=\sum_{l \in L} p, t^{\prime}$. The Hilbert series is then recovered from the Poincaré series by a formula analogous to the definition of the counting function: $h_{l}=\sum_{l^{\prime} \geq l} p_{l}$ (Note that this is not a straight forward result, since there are elements in $\mathbb{Z}\left[\left[t^{L}\right]\right]$ killed by $\left.1-t_{v}^{-1}\right)$.
Theorem (Némethi)
If $(X, 0)$ is a splice quotient singularity, then $Z_{0}(t)=P(t)$.

The Seiberg-Witten invariants

The Seiberg-Witten invariants are numbers $\mathbf{s w}_{M}(\sigma)$ associated to any $\operatorname{spin}^{\mathrm{c}}$ structure σ on a three dimensional manifold. Being the link of a complex space, the link is equipped with the canonical $\operatorname{spin}^{\mathrm{c}}$ structure $\sigma_{\text {can }}$. The above analogies between $H(t)$ and $Q(t)$, along with the following result, show a strong tie between the Seiberg-Witten invariant and the geometric genus.
Theorem

$$
\operatorname{sw}_{M}\left(\sigma_{\mathrm{can}}\right)-\frac{Z_{K}+|\mathcal{V}|}{8}=q_{Z_{K}}
$$

The Seiberg-Witten invariant conjecture

The above formula for p_{g} was obtained by showing that for each i we have $h_{Z_{i+1}}-h_{Z_{i}}=\max \left\{0,\left(Z_{i}, E_{v(i)}\right)+1\right\}$, and then taking sum over i. A similar approach works for the Seiberg-Witten invariant, proving the Seiberg-Witten invariant conjecture of Némethi and Nicolaescu in this case.

Theorem
Let $\left(Z_{i}\right)_{i=0}^{k}$ be the computation sequence for Z_{K} constructed above. Then, for each i

$$
q_{Z_{i+1}}-q_{Z_{i}}=\max \left\{0,\left(Z_{i}, E_{v(i)}\right)+1\right\} .
$$

In particular,

$$
\operatorname{sw}_{M}\left(\sigma_{\mathrm{can}}\right)-\frac{Z_{K}+|\mathcal{V}|}{8}=p_{g}
$$

Thank you!

- András Némethi,
- András Stipsicz,
- Patrick Popescu-Pampu,
- László Tamás,
- Central European University,
- Rényi Alfréd institute,
- Audience,
- Many more...

