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Abstract. We compare three naturally occurring multi-indexed filtrations of
ideals on the local ring of a Newton nondegenerate hypersurface surface sin-
gularity with rational homology sphere, which in many cases are all distinct.
These are the divisorial, the order, and the image filtrations. These filtrations
are indexed by the lattice associated with a toric partial resolution of the
singularity, or equivalently, the free Abelian group generated by the compact
facets of the Newton polyhedron.

We prove that there exists a top dimensional cone contained in the Lip-
man cone having the property that the three ideals indexed by order vectors
from this cone coincide. As a corollary, if a periodic constant can be associated
with the Hilbert series associated with these filtrations on the Lipman cone,
then they coincide.

In some cases, the Poincaré series associated with one of these filtrations
has been shown to coincide with a zeta function associated with the topolog-
ical type of the singularity. In the end of the article, we show that this is the
case for all three filtrations considered in the case of a Newton nondegenerate
suspension singularity. As a corollary, in this case, the zeta function provides
a direct method of determining the Newton diagram from the link.

1 Introduction

Let (X, 0) ⊂ (C3, 0) be a hypersurface singularity given as the vanishing set
of a function f ∈ OC3,0 with Newton nondegenerate principal part. Assume further
that the link is a rational homology sphere. Let Ḡ be the dual graph to the compact
Newton boundary of f . That is, the vertex set N indexes the compact facets of
Γ+(f) so that for n ∈ N we have a face Fn = Fn(f), and two vertices are joined
by an edge if and only if the corresponding faces intersect in a segment. There is a
corresponding toric modification of C3 which yields a V resolution π : X̃ → X. To
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each n ∈ N there corresponds an irreducible component of the exceptional π−1(0),
say En. This correspondence is bijective.

For each n ∈ N we denote by divn the valuation on OX,0 associated with
the divisor En. Furthermore, the positive primitive normal vector to the face Fn
provides a valuation ŵtn on OC3,0 which induces the order function wtn on OX,0
via

wtn(g) = max
{

ŵtn(h)
∣∣h|X = g

}
.

For g ∈ OX,0 we set div g = (divn g)n∈N and wt g = (wtn g)n∈N For k ∈ ZN we
define

F(k) = {g ∈ OX,o|div g ≥ k} , G(k) = {g ∈ OX,o|wt g ≥ k} .

Similarly, let Ĝ be the divisorial filtration on OC3,0 associated with the valuations
ŵtn, n ∈ N . We define I(k) as the image of Ĝ(k) under the natural projection
OC3,0 → OX,0

It follows from these definition that for all k ∈ ZN we have inclusions

I(k) ⊂ G(k) ⊂ F(k). (1)

In general, we may not expect equality here. In [5], Lemahieu shows that the I
and G coincide if and only if the Newton diagram of f is bi-stellar, i.e. every pair
of compact facets of Γ+(f) shares a point. In Example 7.6 of [8], Némethi provides
an example of a Newton nondegenerate singularity whose diagram contains only
two compact faces (in particular, it is bi-stellar) for which the inclusion G ⊂ F is
shown to be proper.

The following theorem is proved in section 6.

Theorem 1.1. Let (X, 0) be a Newton nondegenerate hypersurface singularity in
(C3, 0) with a rational homology sphere link. Then there exists an |N | dimensional
polyhedral cone C ⊂ SR (see definitions 5.1 and 5.2 for C and SR) satisfying

∀k ∈ C ∩ ZN : F(k) = G(k) = I(k).

In section 7 we define the zeta function and prove the following

Theorem 1.2. If (X, 0) is a Newton nondegenerate suspension singularity with ra-
tional homology sphere link, then I,G,F all coincide. Furthermore, the associated
Poincaré series coincides with the reduced zeta function ZN0 (t) with respect to nodes
(see def. definition 7.8), which is given by the formula

1− tŵt f

(1− tŵt x)(1− tŵt y)(1− tŵt z)
. (2)

Acknowledgements. I discovered the theorems proved in this article during the
PhD program at Central European University under the supervision of András
Némethi. I would like to thank András for the many fruitful discussions we have
had, and for suggesting to me many interesting problems related to singularity
theory.
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2 Associated power series and the search for an equation
For a better understanding of these filtrations, the associated Hilbert and

Poincaré series are introduced:

HF (t) =
∑
k∈ZN

hFk t
k, PF (t) =

∑
k∈ZN

pFk t
k = −HF (t)

∏
n∈N

(1− t−1
n ),

where hFk = dimCOX,0/F(k). Similar definitions are made for the other filtrations.
These series provide very strong numerical invariants of the analytic structure

of the singularity. Two leading questions in the theory of surface singularities are,
on one hand, whether numerical analytic invariants such as these can be character-
ized by the topology of (X, 0), and on the other, whether numerical invariants can
be used to construct variables and equations realizing singularities with a given
topology.

The divisorial filtration F is intrinsic to the singularity (X, 0), and therefore
one may hope for it to have the most direct relation to the link, whether or
not the singularity (X, 0) is a hypersurface. Indeed, in [8], Némethi provides a
topological invariant, the zeta function, which coincides with PF in many cases,
e.g. for rational singularities and minimally elliptic singularities whose minimal
resolution is good. These are examples of classes of singularities whose intrinsic
analytic structure has restrictions. The main identity in [8] is not true for arbitrary
singularities, but has been proved for singularities of splice-quotient type [9].

On the other hand, the filtrations I and G are given in terms of the embedding
of the singularity (X, 0) ⊂ (C3, 0). It is not clear how to relate the topology of
(X, 0), or its embedded type to the Hilbert or Poincaré series associated with these
filtration. On the other hand, as we shall see, there are cases when the knowledge
of the Poincaré series can be used to rebuild the singularity, or a similar one.

There are no relations between the monomials of the ring OC3,0, and the
filtration Ĝ is given by a grading of these monomials. As a result, one computes
easily (see also Proposition 1 of [2]):

P Ĝ(t) =
1

(1− tŵt x)(1− tŵt y)(1− tŵt z)
.

By a result of Lemahieu [5], this gives

P I(t) = (1− tŵt f )P Ĝ =
1− tŵt f

(1− tŵt x)(1− tŵt y)(1− tŵt z)
.

If we assume that f has a convenient Newton diagram (meaning in our case that
f(x, y, z) contains monomials of the form xa, yb, zc with nonzero coefficients),
then the arguments of section 5 of [5] show that this series in fact determines the
Newton polyhedron (it is also determined by it). In particular, if this series can
be computed using only the topological type of (X, 0), then one obtains a method
of determining from only the topology of (X, 0) an equation for a singularity with
that topological type. We shall see in section 7 that this program actually runs in
the case of suspension singularities with rational homology sphere.
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In fact, in [1], Braun and Némethi found, using totally different methods,
that when the link of a Newton nondegenerate hypersurface singularity is a rational
homology sphere, then the link determines the Newton diagram, up to permutation
of the coordinates. Nonetheless, the above route identifies a more conceptual way
of finding an equation determining a given topology.

3 Newton nondegeneracy
In this section we define the Newton polyhedron and its normal fan. We do

not subdivide the normal fan to obtain a smooth variety. As a result, we obtain
a partial resolution of (X, 0) which has at most cyclic quotient singularities. This
construction is described in details in [11].

Let f be a convergent power series in three variables given as f(x) =
∑
u∈N3 aux

u.
We define the support of f as

supp(f) =
{
u ∈ N3

∣∣ au 6= 0
}

and the Newton polyhedron of f as

Γ+(f) = conv(supp(f) + R3
≥0).

A facet of Γ+(f) is a face of dimension 2. We index the compact facets of Γ+(f)
by a set N , which we take as the vertex set of a graph Ḡ as in the introduction.
We define the graph Ḡ∗ similarly, but we allow in this case noncompact facets as
well. We denote the vertex set of Ḡ∗ by N ∗.

To a vertex n ∈ N ∗, there corresponds a facet Fn ⊂ Γ+(f). To each such n
there corresponds a unique primitive integral linear functional `n : Rn → R having
Fn as its minimal set in Γ+(f).

We identify the set of integral linear functionals ` : Z3 → Z taking nonneg-
ative values on N3 with N3 via the standard intersection product. Thus, for each
n ∈ N , the functional `n corresponds to the primitive normal vector to Fn pointing
into Γ+(f). For any face F ⊂ Γ+(f) (of any dimension) denote by

fF =
∑
{auxu |u ∈ F ∩ supp(f)} .

Definition 3.1. The function f is Newton nondegenerate if for any compact face
F ⊂ Γ+(f), the affine scheme{

x ∈ (C∗)3
∣∣ fF (x) = 0

}
is smooth.

Definition 3.2. The normal fan, denoted by4f of the polyhedron Γ+(f) subdivides
the positive octant R≥0 as follows.

` The one dimensional cones are generated by `n for n ∈ N ∗.
` A two dimensional cone in the normal fan is generated by two vectors `n and

`n′ where n, n′ are adjacent in Ḡ∗. Equivalently, for any segment S = Fn∩F ′n,
with dimS = 1, there is a cone consisting of those functionals whose minimal
value on Γ+(f) is taken on all of S.
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` The above construction splits the positive octant into chambers, whose clo-
sures are the three dimensional cones in the normal fan. Equivalently, to each
vertex u ∈ Γ+(f), there is a three dimensional cone in the normal fan con-
sisting of those linear functions whose minimum on Γ+(f) is realized at the
point u.
Denote by Yf the toric variety associated with 4f . Then we have a canonical

morphism Yf → C3. Denote by X̄ ⊂ Yf the strict transform of X. Denote by On
the orbit in Yf corresponding to the cone generated by `n, and by En the closure
of On ∩ X̄.

4 The intersection lattice

If f is Newton nondegenerate, then the strict transform X̄ has transverse
intersections with all orbits in Yf , meaning that, if O is an orbit, then the scheme
theoretic intersection X̄∩O is smooth. Furthermore, the divisors En are irreducible
[11].

We will identify the lattice L̄ = ZN with the set of divisors on X̄ supported
on the exceptional divisor, that is, the Abelian group freely generated by the
irreducible divisors En for n ∈ N . An intersection product is obtained on this
lattice as follows. Take a resolution φ : X̃ → X̄ which is an isomorphism outside
the singular set X̄sing (note that X̄ has isolated singularities). In particular, there
is a well defined intersection theory on X̃. For any curve C ⊂ X̄, the pullback φ∗E
is defined as C̃+Cexc, where C̃ is the strict transform of C, and Cexc is the unique
rational divisor supported on φ−1(X̄sing), satisfying (E, C̃ + Cexc) = 0 for any
divisor E supported on φ−1(X̄sing). This equation has a unique solution for Cexc

since the lattice of divisors supported on the exceptional divisor of the resolution φ
is negative definite, in particular, nonsingular. We then set (C,C ′) = (φ∗C, φ∗C ′).
Note that for integral cycles C,C ′ ∈ L̄, the intersection number (C,C ′) is rational,
but not necessarily integral.

Definition 4.1. We refer to L̄ with the intersection form defined above as the
intersection lattice. Elements of L̄, or or L̄R = L̄⊗R are referred to as cycles. Let
n ∈ N and n′ ∈ N ∗. We set en = E2

n = (En, En). Furthermore
` Denote by tn,n′ the length of the segment Fn ∩ Fn′ , that is, the number of

relative interior integral points on this segment. In particular, tn,n′ = 0 if and
only if n, n′ are not adjacent.

` Denote by αn,n′ the index of the lattice generated by `n and `n′ in its satu-
ration in Hom(L̄,Z).

Proposition 4.2. The intersection lattice is negative definite. In particular, we have
en < 0. Let n, n′ ∈ N be adjacent in Ḡ. Then (En, En′) = tn,n′/αn,n′ . Further-
more, for any n ∈ N , we have

en`n +
∑
n′

tn,n′

αn,n′
`n′ = 0.
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Proof. The intersection lattice can be seen as a subspace of the intersection lattice
associated with a resolution of (X, 0), which is negative definite, see e.g. [7]. The
rest follows from [11], see also [1]. �

5 Cycles, Newton diagrams and the cone
In this section we define the cone C which appears in theorem 1.1. This re-

quires some analysis of the geometry of Newton diagrams associated with arbitrary
cycles. Lemma 5.3 shows that C has the right properties, that is, it is a top di-
mensional rational cone contained in the Lipman cone. Lemma 5.5 is a workhorse
used in the proof of theorem 1.1.

Definition 5.1. The Lipman cone SR is the set of vectors Z ∈ L̄R satisfying (Z,E) ≤
0 for any effective cycle E.

It is well known that the Lipman cone is an |N |-dimensional simplicial cone
generated by elements with all coordinates positive.

We associate to a cycle Z ∈ L̄R the Newton polyhedron

Γ+(Z) =
{
u ∈ R3

≥0

∣∣∀n ∈ N , `n(u) ≥ mn(Z)
}

where the mn are defined by Z =
∑
n∈N mn(Z)En. For a subgraph A of Ḡ (or a

subset of N ) let NA be the set of vertices either in A or connected to a vertex in
A. For a cycle Z let

ΓA+(Z) =
{
u ∈ R3

≥0

∣∣∀n ∈ NA, `n(u) ≥ mn(Z)
}

and for a ∈ A, denote by FAa (Z) the corresponding face of this polyhedron, given
by

FAa (Z) =
{
u ∈ ΓA+(Z)

∣∣ `a(u) = mn(Z)
}
.

Note that we may have FAa (Z) = ∅.

Definition 5.2. Let C be the set of divisors Z ∈ L̄ satisfying

` ∅ 6= F
{n}
n (Z) = Fn(Z) for all n ∈ N .

` If n, n′ ∈ N are adjacent in Ḡ and ρ(Fn(f) ∩ Fn′(f)) + u ⊂ Fn(Z) ∩ Fn′(Z)
for some ρ ≥ 0 and u ∈ R3 then ρFn(f) + u ⊂ Fn(Z).

Lemma 5.3. C is a top dimensional polyhedral cone contained in the Lipman cone
SR.

Proof. The definition of C is equivalent to a finite number of rational inequalities,
and so the set C is a rational polyhedron. Furthermore, assume that λ ∈ R≥0

and Z,Z ′ ∈ C. Then FAn (λZ) = λFAn (Z) for any A ⊂ N , which shows λZ ∈ C.
Furthermore, FAn (Z + Z ′) = FAn (Z) + FAn (Z ′). Thus, if n, n′ ∈ N are adjacent in
Ḡ, and

ρ > 0, u ∈ R3, ρ(Fn(f) ∩ Fn′(f)) + u ⊂ Fn(Z + Z ′) ∩ Fn′(Z + Z ′),
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then there are ρ1, ρ2 > 0, u1, u2 ∈ R3 so that

ρ1(Fn(f) ∩ Fn′(f)) + u1 ⊂ Fn(Z) ∩ Fn′(Z),

ρ2(Fn(f) ∩ Fn′(f)) + u2 ⊂ Fn(Z ′) ∩ Fn′(Z ′),

and we get

ρFn(f) + u = (ρ1Fn(f) + u1) + (ρ2Fn(f) + u2) ⊂ Fn(Z) + Fn′(Z) = Fn(Z + Z ′).

As a result, we find Z,Z ′ ∈ C, and so C is a cone.
Next, we prove C ⊂ SR. Let n ∈ N and choose an u ∈ F

{n}
n , which is

nonempty by assumption. We find

(En, Z) = enmn(Z) +
∑
n′∈Nn

tn,n′mn′(Z)

αn,n′
≤ en`n(u) +

∑
n′∈Nn

tn,n′`n′(u)

αn,n′
= 0.

Finally, we prove that C has dimension |N |. We will use the terminology in-
troduced in [1], in particular, central faces and edges, arms and hands. Let n0 ∈ N
be a vertex so that Fn0

(f) intersects all the coordinate planes. Then the comple-
ment N \n0 is a disjoint union of parts of arms. Let the vertices of the k-th partial
arm have vertices nk,j in such a way that nk,1 is adjacent to n0, and for j ≥ 2,
nk,j is adjacent to nk,j−1. We also set nk,0 = n0 for any k.

Define Z ∈ L̄R recursively as follows. Start by choosing ε > 0 very small and
set mn0(Z) = ŵtn0 f and mnk,1(Z) = ŵtnk,1(f) − ε. Note that at this point we
have a well defined facet

F {n0}
n0

(Z) =
{
u ∈ R3

≥0

∣∣ `n0 = mn0(Z), ∀k : `nk,1 ≥ mnk,1(Z)
}

and it follows from this construction that this face intersects each coordinate hy-
perplane in a segment of positive length.

Next, assume that we have defined mnk,j for 0 < j ≤ j0 for some j0 > 0. In

particular, the facet F {nk,j0−1}
nk,j0−1 (Z) is well defined similarly as above. Unless nk,j0

is a hand, define

mnk,j0+1
(Z) = min

{
`nk,j0+1

(u)
∣∣∣u ∈ F {nk,j0−1}

nk,j0−1 (Z)
}
− ε.

In particular, the face F {nk,j0}nk,j0
(Z) is now well defined.

Note now that if n is a node, and F
{n}
n (Z) is already well defined, then

the value mnk,j0+1
(Z) is smaller than the minimal value of `nk,j0+1

on F
{n}
n (Z).

Therefore, we find
∀n ∈ N : F {n}n (Z) = Fn(Z),

proving the first condition for Z ∈ C. The second condition follows similarly.
Finally note that at every step in the definition of Z, we may as well have

used different epsilons, meaning that a generic small perturbation of Z is also in
C. It follows that C contains an open subset of L̄R, and so has highest dimension
possible, |N |. �
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Remark 5.4. By the above lemma, if Z ∈ C, then either Z = 0, or all coordinates
of Z are positive, that is, mn(Z) > 0 for all n ∈ N , since this holds for any element
of the Lipman cone.

Lemma 5.5. Let Z ∈ C, ρ ∈ R>0 and u ∈ R3 satisfying ρFn(f) + u ⊂ Fn(Z) for
some n ∈ N . Then ρΓ+(f) + u ⊂ Γ+(Z).

Proof. For A ⊂ N a subset inducing a connected subgraph of Ḡ containing n, let
PA(Z) be the following condition:
(i). We have ρFk(f) + u ⊂ FAk (Z) for all k ∈ A.
(ii). For any l ∈ N \ A, l′ ∈ Nl and dilation φ : R3 → R3, x → ρ′x + u′ so that

φ(Fl(f)∩Fl′(f)) ⊂ FBl (Z)∩FBl′ (Z) where B is the connected component of
Ḡ \A containing l, we have φ(Fl(f)) ⊂ FBl (Z).
The assumptions of the lemma imply P{n}(Z). Assuming there is a Z ′ ∈ L̄

with Z ′ ≥ Z so that PN (Z ′) holds, we find ρΓ+(f) + u ⊂ Γ+(Z ′) ⊂ Γ+(Z),
proving the lemma. Thus, it is enough to prove that given an n ∈ A ⊂ N inducing
a connected subgraph of Ḡ, and a Z ′ ≥ Z so that PA(Z ′) holds, and an i ∈ NA\A,
there is a Z ′′ ≥ Z ′ so that PA∪{i}(Z ′′) holds.

So, let such an i be given, assume that it is adjacent in Ḡ to a j ∈ A. Since
ρFj(f) + u ⊂ FAj (Z) we have mi(Z) ≤ ρ ŵti(f) + `i(u). Let s = ρ ŵti(f)+`i(u)

mi(Z) .
Note that the denominator here is nonzero by remark 5.4. Then s ≥ 1. Let B be
the connected component of Ḡ \A containing i and define the cycle Z ′′ by

mk(Z ′′) =

{
smk(Z) if k ∈ B,
mk(Z) else.

Then Z ′′ ≥ Z ′. We start by noting that condition PA∪{i}(Z ′′)(ii) follows immedi-
ately from PA(Z ′)(ii).

We are left with proving PA∪{i}(Z ′′)(i). We must show that for k ∈ A ∪ {i}
and l ∈ NA∪{i} we have

ml(Z
′′) ≤ min

ρFk(f)+u
`l, (3)

with equality in the case k = l.
If k ∈ A and l 6= i, then this is clear from PA(Z ′)(i).
The minimum of `i on ∪k∈AρFk + u is taken on (ρFi + u) ∩ (ρFj + u), and

so by definition of mi(Z
′′), eq. (3) holds also for l = i and any k ∈ A.

Equation (3) is also clear when k = i and l is either i or j.
Finally, we prove eq. (3) in the case k ∈ A ∪ {i} and l 6= j. Similarly as

above, the function `l restricted to ∪k∈A∪{i}ρFk + u takes its minimal value on
(ρFi + u) ∩ (ρFl + u), and so it suffices to consider the case k = i.

Let ρ′ > 0 and u′ ∈ R3 be such that ρ′(Fi(f)∩Fj(f)) +u′ = Fi(Z
′)∩Fj(Z ′).

By PA(Z ′)(ii), we have ρ′Fi(f) + u′ ⊂ Fi(Z
′). By the definition of Z ′′, we find

s · Fi(Z ′) ⊂ Fi(Z ′′). As a result,

s(ρ′Fi(f) + u′) ⊂ sFi(Z ′) ⊂ Fi(Z ′′).



On ideal filtrations for Newton nondegenerate surface singularities 9

An application of lemma 5.6 now shows that if ρ′′ > 0 and u′′ are such that
ρ′′(Fi(f)∩ Fj(f)) + u′′ = Fi(Z

′′)∩ Fj(Z ′′), then ρ′′Fi(f) + u′′ ⊂ Fi(Z ′′). Now, we
get

ρ(Fi(f) ∩ Fj(f)) + u ⊂ ρ′′(Fi(f) ∩ Fj(f)) + u′′.

which then implies

ρFi(f) + u ⊂ ρ′′Fi(f) + u′′ ⊂ Fi(Z ′′),
which is PA∪{i}(Z ′′)(i) for k = i. �

Lemma 5.6. Let A ∼= R2 be an affine plane, `i : A → R affine functions for
i = 0, . . . , s. Assume that P,Q ⊂ A are polygons given by inequalities `i ≥ pi and
`i ≥ qi respectively, in such a way that pi = minP `i and qi = minQ `i. Let Pi and
Qi be the minimal sets of `i on P and Q respectively. We assume that Q ⊂ P and
that Q0 = P0 is a segment of positive length.

Take a p′0 < p0 in such a way that we have a polygon P ′ defined by inequalities
`0 ≤ p′0 and `i ≤ pi for i > 0, and p′0 = minP ′ `0, and define P ′i as the minimal
set of `i on P ′. Assume that P ′0 is a segment of positive length. Let φ : A→ A be
the unique affine isomorphism which preserves directions (i.e. if L ⊂ A is a line,
then L and φ(L) are parallel) so that φ(P0) = P ′0. Then φ(Q) ⊂ P ′.

Proof. We can assume that P ′1 and P ′s are adjacent to P ′0. Consider three cases.
The first case is when the lines spanned by the segments P ′1 and P ′s are not

parallel, and their intersection point a satisfies `0(a) < p0. In this case, φ is a
homothety with center a and ratio < 1. As a result, if we define P 1 as the convex
hull of P and a, then φ(P ) ⊂ P 1. In particular, φ(Q) ⊂ P 1. The polygon P 1 can
be defined by the inequalities `i ≥ ci for i > 0. It is clear that φ(Q) also satisfies
`0 ≥ c′0. As a result, φ(Q) ⊂ P ′.

P P

Q

a

φ(Q)φ(Q)

Q

a

φ(Q)

Q

P

Figure 1. Two homotheties and a translation.

In the second case, assume that the segments P ′1 and P ′s are parallel. In this
case, φ is a translation preserving the lines spanned by P ′1 and P ′s, and P ′ is the
convex hull of P and φ(P ). In particular, Q ⊂ P ′.
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In the third case, the lines spanned by P ′1 and P ′s are not parallel, and their
intersection point a satisfies `0(a) > c0. In this case, φ is a homothety with center
a and ratio > 1 and similarly as in the second case, P ′ is the convex hull of P and
φ(P ), and so φ(Q) ⊂ P ′. �

6 Equality between ideals
For g ∈ OC3,0 denote by gn the principal part of g with respect to the weight

function `n. For i = 1, 2, 3 and ĝ ∈ OC3,0, we denote by ŵti the weight of g with
respect to the i-th natural basis vector, i.e. ŵti(xj) = δi,j .

Lemma 6.1. Let g ∈ OC3,0. Then ŵtn g ≤ divn g|X with sharp inequality if and
only if fn divides gn over the ring of Laurent polynomials.

Proof. See e.g. the proof of Proposition 1 of [3]. �

Lemma 6.2. Let g ∈ OC3,0 and assume ŵtn g < divn g for some n ∈ N . Let
h = gn/fn (a Laurent polynomial by 6.1). Writing {1, 2, 3} = {i, j, k}, if Fn(f)
intersects the xjxk coordinate plane, then ŵti(h) ≥ 0.

Proof. Assume that h contains a monomial with a negative power of xi. Then the
same would hold for gn = hfn, since fn contains monomials with no power of
xi. �

Proof of theorem 1.1. We want to show that for any Z ∈ C, we have F(Z) =
G(Z) = I(Z). In light of eq. (1), it suffices to show that F(Z) contains I(Z), that
is, if g ∈ F(Z), then there exists a ĝ ∈ OC3,0 restricting to g with ŵt ĝ ≥ mn(Z)
for all n ∈ N .

We use the classification in [1] to set up an induction on the vertices of Ḡ.
Assume that n0 is a vertex which intersects all the coordinate axes. This can
be done by Proposition 2.3.9 of [1] by choosing Fn0

either as a central facet or
containing a central edge. We define the partial ordering ≤ onN by setting n1 ≤ n2

if n1 lies on the geodesic connecting n0 and n2. Note that Ḡ has well defined
geodesics since it is a tree.

We prove inductively the statement P (A) that for a subset A ⊂ N satisfying

n ∈ A, n′ ≤ n, ⇒ n′ ∈ A,
there exists a ĝ ∈ OC3,0 satisfying ĝ|X = g and ŵtn g ≥ mn(Z) for any n ∈ A.

The initial case P (∅) is clear, but we prove P ({n0}) as well. Take any ĝ ∈
OC3,0 restricting to g. If wtn0

ĝ < mn0
(Z), then by lemma 6.1 there is a Laurent

polynomial h so that ŵtn0(ĝ − hf) > ŵtn0 ĝ. By our choice of n0 and lemma 6.2,
h is a polynomial, and so we can replace ĝ with ĝ − hf ∈ OC3,0. After repeating
this argument finitely many times, we can assume that ŵtn0

ĝ ≥ mn0
(Z).

Next, assume that A ⊂ N satisfies our inductive hypothesis, and that n ∈ N
is a minimal element of N \A. It suffices to find a polynomial h such that ĝ − hf
satisfies P (A), as well as ŵtn(ĝ − hf) > ŵtn(ĝ).
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By 6.1 there does exist a Laurent polynomial h so that ŵtn(ĝ−hf) > ŵtn ĝ.
Indeed, set h = ĝn/fn. We can assume that Fn(f) intersects the x1x3 and x2x3

coordinate hyperplanes. By 6.2 we have ŵt1 h ≥ 0 and ŵt2 h ≥ 0. In order to finish
the proof, it therefore suffices to show ŵt3(h) ≥ 0 and wta(hf) ≥ mn(Z).

We construct a cycle Z ′ as follows. Let a be the unique vertex in A adjacent
to n and p the unique point on the x3 axis satisfying `a(p) = ma(Z). Set mk(Z ′) =
mk(Z) for all k in the connected component of Ḡ \ n containing A, otherwise set
mk(Z ′) = `k(p). As a result, the Newton polyhedron Γ+(Z ′) of Z ′ is the convex
closure of Γ(Z) and the point p. In particular, if k is in the connected component
of G \ n containing A, then either Fk(Z ′) = Fk(Z), or k = a and Fa(Z ′) ⊂ Fa(Z).
For any other vertex k, we have Fk(Z ′) = {p}. It follows from this that Z ′ ∈ C.

In fact, we find that

x ∈ R3
≥0, `a(x) = ma(Z), `n(x) ≤ mn(Z) ⇒ x ∈ Fa(Z ′).

Now let u ∈ supp(h) and w ∈ supp(fn). We then have `a(u + w) ≥ ma(Z) and
`n(u + w) < mn(Z). Since `a(0, 0, 1) > 0, there is a t > 0 so that `a(u + w −
(0, 0, t)) = mn(Z), and we also have `n(u + w − (0, 0, t)) < mn(Z). We have
thus proved that Fn(f) + u− (0, 0, t) ⊂ Fn(Z ′). Lemma 5.5 now gives the middle
containment in

Γ+(f) + u ⊂ Γ+(f) + u− (0, 0, t) ⊂ Γ+(Z ′) ⊂ R3
≥0,

which implies, on one hand, that ŵtk(hf) ≥ mk(Z ′) = mk(Z) for all k ∈ A, and
on the other hand, ŵt3(h) = ŵt3(hf) ≥ 0, finishing the proof. �

7 Suspension singularities
In this section we consider suspension singularities. In this case, a stronger

statement than theorem 1.1 holds, namely, the three filtrations all coincide. Most
of the work in this section, however, goes into proving the reduced identity for
nodes for suspension singularities, see [8] Definition 6.1.5. This means that the
Poincaré series associated with the filtration F (or G or I, as they coincide in this
case) is identified by a topological invariant, the zeta function associated with the
link of the singularity.

In this section we assume that (X, 0) is a suspension singularity, that is, there
is an f0 ∈ OC2,0 and an N ∈ Z>1 so that (X, 0) is given by an equation f = 0,
where f(x, y, z) = f0(x, y) + zN . Newton nondegeneracy for f means that f0 is
Newton nondegenerate. For convenience, we will also assume that the diagram of
f is convenient. This is equivalent to f0 not vanishing along the x or y axis.

Proof of theorem 1.2. If f is the N -th suspension of an equation of a plane curve
given by f0 = 0, so that f(x, y, z) = f0(x, y) + zN , then every compact facet of
Γ+(f) is the convex hull of a compact facet of the Newton polyhedron of f0 and
the point (0, 0, N). In particular, Γ+(f) is bi-stellar, and so by Proposition 4 of
[5], we have I = G.
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Now, let n ∈ N correspond to the facet Fn ⊂ Γ+(f). By the description
above, Fn intersects all coordinate hyperplanes. If ĝ ∈ OC3,0 and ŵtn ĝ < divn g|X ,
then by lemmas 6.1 and 6.2, there is a polynomial h so that ŵtn ĝ − fh > ŵt ĝ.
As a result, we find wtn g = divn g for g = ĝ|X , that is, F = G.

The formula for the Poincaré series is shown in section 2 to follow from [5].
The formula for the zeta function is theorem 7.9. �

Using a smooth subdivision of the normal fan to Γ+(f), we obtain an em-
bedded resolution of (X, 0), whose resolution graph we denote by G. This graph is
obtained as follows. From Ḡ∗, construct G∗ by replacing edges between n, n′ ∈ N
with a string, and an edge between n ∈ N and n′ ∈ N ∗ \ N with tn,n′ bamboos.
The graph G is obtained from G∗ by removing the vertices in N ∗ \ N , see [11]
for details. We denote by V the vertex set of G, and we have a natural inclusion
N ⊂ V, where if v ∈ V, then v ∈ N if and only if v has degree > 2. We denote by
E the set of vertices in G with degree 1. Note that if e ∈ E , then there are unique
n ∈ N and n′ ∈ N ∗ \ N so that e lies on a bamboo connecting n and n′. We set
αe = αn,n′ in this case, recall definition 4.1. For a given n, we denote the set of
such e ∈ E by En. Thus, the family (En)n∈N is a partitioning of E . A vertex v ∈ V
corresponds to an irreducible component of the exceptional divisor Ev.

The associated intersection lattice is negative definite, in particular, the in-
tersection matrix is invertible. Thus, for v ∈ V, we have a well defined cycle E∗v ,
that is, divisor supported on the exceptional divisor of the resolution, satisfying
(Ew, E

∗
v ) = 0 if w 6= 0, but (Ev , E

∗
v ) = −1. We denote the lattice generated by

Ev by L, and the lattice generated by E∗v by L′. We then have L = H2(X̃,Z) and
L′ = H2(X̃, ∂X̃,Z) = Hom(L,Z).

Write Γ+(f0) = ∪ri=1Γi0, where Γi0 = [(ai−1, bi−1), (ai, bi)] are the facets of the
Newton polyhedron of f0, so that 0 = a0 < . . . < ar and br = 0. Let si be the length
of the i-th segment, that is, the content of the vector (ai−ai−1, bi− bi−1). Let Fni
be the facet of Γ+(f) containing the segment [(ai−1, bi−1), (ai, bi)]. Furthermore,
let sx = gcd(N, b0) and sy = gcd(N, ar). Then, in fact, if nx, ny are the vertices
in N ∗ corresponding to the yz and xz coordinate hyperplanes, respectively, then
sx = tn1,nx and sy = tnr,ny .

It can happen that the diagram Γ(f) is not minimal in the sense of [1]. This
is the case if sx = N , sy = N , a1 = 1 or br−1 = 1. If this is the case, we blow up
the appropriate points to produce redundant legs consisting of a single −1 curve
to make sure that nodes, that is, vertices of degree > 2 in G correspond to facets
in Γ(f) and their legs correspond to primitive segments on the boundary of Γ(f).
In particular, we assume that wtxyz =

∑
e∈E E

∗
e .

The sets En1
and Enr have special elements exj , 1 ≤ j ≤ sx, and eyj , 1 ≤

j ≤ sy, corresponding to the segments [(0, b0, 0), (0, 0, N)] and [(ar, 0, 0), (0, 0, N)],
respectively. Set Ex1 = {exi |1 ≤ i ≤ sx} and Exi = ∅ for i > 1. Similarly, set
Eyr = {eyi |1 ≤ i ≤ sy} and Eyi = ∅ for i < r. Further, let Ezi = Eni \ (Exi ∪ E

y
i ). Set

also Et = ∪iEti for t = x, y, z. Note that we get |Ezi | = si. Define sz =
∑
i si. Write
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Ezi = {ez,i1 , . . . , ez,isi }. Note that the number αe is constant for e ∈ Ex (in fact, we
have αe = a1/s1). We denote this by αx. Define αy similarly.

If 1 < i < r we have αe = N for e ∈ Ezi . We have αe = N/sx for e ∈ Ez1 and
αe = N/sy for e ∈ Ezr .

Lemma 7.1. Let n ∈ N and e ∈ En. Then αeE∗e−E∗n ∈ L. Furthermore, αeE∗e−E∗n
is supported on the leg containing e, that is, the connected component of G \ n
containing e.

Proof. This follows from Lemma 20.2 of [4]. �

Definition 7.2. Let H be the first homology group of the link of (X, 0). Thus,
H = L′/L, where L ⊂ L′ via the intersection product. If l ∈ L′, we denote its class
in H by [l].

Lemma 7.3. The order of H is Nsz−1αsx−1
x α

sy−1
y .

Proof. From the proof of Theorem 8.5 of [6], we see that in fact, |H| = ∆(1),
where ∆ is the characteristic polynomial of the monodromy action on the second
homology of the Milnor fiber. We leave to the reader to verify, using [12], that the
characteristic polynomial is, in our case, given by the formula

∆(t) =

[(
r∏
i=1

(tmi − 1)si

)
(tm1 − 1)

sx−1
(tmr − 1)

sy−1

]
[(

r∏
i=1

(t
mi
αi − 1)si

)(
t
m1
αx − 1

)sx (
t
mr
αy − 1

)sy]−1

[(
t
m1
α1αx − 1

)(
t
mr
αrαy − 1

) (
tN − 1

)]
(t− 1)−1,

where for i = 1, . . . , r, we take mi ∈ Z so that the facet Fni of Γ+(f) containing
[(ai−1, bi−1), (ai, bi)] is contained in the hyperplane `ni ≡ mi. This implies

∆(1) =
[
∏
i=1m

si
i ]msx−1

1 m
sy−1
r

(
mi
α1αx

)(
mr
αrαy

)
N[∏

i=1

(
mi
αi

)si] (
mi
α1

)sx (
mr
αr

)sy
=

[
r∏
i=1

αsii

]
α−1

1 α−1
r αsx−1

x αsy−1
y N

Now, for 1 < i < r, we have αi = N . Furthermore, if s1 6= 1, then sx = 1 and
α1 = N . Similarly, if sr 6= 1, then sy = 1 and αr = N . As a result, the above
product equals Nsz−1αsx−1

x α
sy−1
y . �

Lemma 7.4. For 1 ≤ i ≤ r, let gi be a generic sum of x
ai+1−ai

si and y
bi−bi+1

si . Then,
for 1 < i < r we have div gi = E∗ni . In particular, [E∗ni ] = 0 ∈ H.
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Furthermore, we have div g1 = sxE
∗
n1

and div gr = syEnr . In particular,
sx[E∗n1

] = sy[E∗nr ] = 0 ∈ H.

Proof. The curve (C, 0) ⊂ (C2, 0) defined by f0 splits into branches C = ∪i,jCi,j
where Ci,1 ∪ . . . ∪ Ci,si correspond to the segment [(ai−1, bi−1), (ai, bi)]. Let G0

be the graph associated with the minimal resolution V → C2 of f0. There are
vertices n̄i in G0 so that the strict transforms C̃i,j intersect the component En̄i
transversely in one point each. The curve defined by gi is a curvette to ni, that is,
if we define Di = {gi = 0} ⊂ C2, then the strict transform D̃i in the resolution of
C is smooth and intersects En̄i in one point, and is disjoint from the C̃i.

The resolution of (X, 0) is obtained by suspending the pull-back of f0 to V ,
resolving some cyclic qutotient singularities, and then blowing down some (−1)-
curves, see e.g. Appendix 1 in [7]. In particular, we have a morphism X̃ → V ,
mapping Eni to En̄i . The condition that (X, 0) has a rational homology sphere
link implies that this map is branched of order N along this divisor. As a result,
it restricts to an isomorphism Eni → En̄i , and the preimage Di of C̃i intersects
Eni transversally in one point. Clearly, Di is the strict transform of the vanishing
set of gi seen as a function on X. It follows that divv gi = E∗ni .

Simlarly, one verifies that we have maps En1
→ En̄i , which are branched

covering maps of order sx. Thus, the strict transform of the vanishing set of g1 inX
consists of sx branches, each intersecting En1

in one point. Thus, divv g1 = sxE
∗
n1
.

A similar argument holds for gr. �

Definition 7.5. Let V ′E = Z〈E∗e |e ∈ E〉 and VE = V ′E ∩ L.

The group H = L′/L is generated by residue classes of ends [E∗e ], e ∈ E .
This is proved in Proposition 5.1 of [10]. In particular, the natural morphism
V ′E/VE → H is an isomorphism.

Lemma 7.6. The lattice VE is generated by the following elements

NE∗e , e ∈ Ez, αxsxE
∗
e , e ∈ Ex, αysyE

∗
e , e ∈ Ex,

αx(E∗exi − E
∗
exi+1

), 1 ≤ i < si, αy(E∗eyi
− E∗eyi+1

), 1 ≤ i < sy,

div(t) =
∑
e∈Et

E∗e , t = x, y, z.

Proof. We start by noting that by lemmas 7.1 and 7.4, if 1 < i < r and e ∈ Enr ,
then

NE∗e = αeE
∗
e ≡ E∗n ≡ 0 (modL),

i.e. NE∗e ∈ VE . Similarly, if e ∈ Ez1 , then

NE∗e = sxαeE
∗
e ≡ sxE∗n1

≡ 0 (modL),

and NE∗e ∈ VE for e ∈ Ezr as well. A similar argument shows αxsxE∗e ∈ VE for
e ∈ Ex and αysyE∗e ∈ VE for e ∈ Ey. Let A be the sublattice of V ′E generated by
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these elements, that is, the top row in the statement of the lemma. We then have
A ⊂ VE , and [V ′E : A] = (αxsx)sx(αysy)syNsz . By lemma 7.3, we get

[VE : A] = [V ′E : VE ]
−1[V ′E : A] = αxs

sx
x αys

sy
y N. (4)

The elements in the second row are also elements of VE , since, by lemma 7.1
we have

αx

(
E∗exi − E

∗
exi+1

)
=
(
αxE

∗
exi
− E∗n1

)
−
(
αxE

∗
exi+1
− E∗n1

)
∈ L,

and similarly for αy
(
E∗
eyi
− E∗

eyi+1

)
. Let A′ be the subgroup of VE generated by A

and these elements. Then [A′ : A] = ssx−1
x s

sy−1
y .

Finally, we have div(t) =
∑
e∈Et E

∗
e ∈ L for t = x, y, z. Define A′′ as the

subgroup of VE generated by A′ and div(t), t = x, y, z. Then [A′′ : A′] = (αxsx) ·
(αysy) ·N , and so [A′′ : A] = αxs

sx
x αys

sy
y N = [VE : A], which gives A′′ = VE . �

Lemma 7.7. We have ŵt f |N = N ŵt z|N .

Proof. Indeed, every compact facet of Γ+(f) contains (0, 0, N). �

Definition 7.8 ([8]). The zeta function associated with the graph G is the expansion
at the origin of the rational function Z(t) =

∏
v∈V

(
1− [E∗v ]tE

∗
v

)δv−2
. Thus, if G

has more than one vertex, then we can write

Z(t) =

[∏
n∈N

(
1− [E∗n]tE

∗
n

)δn−2
][∏

e∈E

∞∑
k=0

(
[E∗e ]tE

∗
e

)k]
∈ Z[H][[tL

′
]],

whereas if G has exactly one vertex, say v, then

Z(t) = (1− [E∗v ]tE
∗
v )−2 =

∞∑
k=0

(k + 1)
(

[E∗v ]tE
∗
v

)k
.

This latter case does not appear in our study of suspension singularities. Here, t
denotes variables indexed by V, and so if l =

∑
v∈V lvEv ∈ L′ with lv ∈ Q, then

we write tl =
∏
v∈V t

lv
v .

We have Z(t) ∈ Z[H][[tL
′
]] ∼= Z[[tL

′
]][H], and the coefficient in front of tl is

in [l] · Z ⊂ Z[H]. Therefore, we have a decomposition Z(t) =
∑
h∈H h · Zh(t) with

Zh(t) ∈ Z[[tL
′
]] for each h ∈ H. In particular, Z0(t) ∈ Z[[tL]].

The reduced zeta function ZN (t) with respect to N is obtained from Z(t) by
restricting tv = 1 for v /∈ N . By restricting Z0(t) similarly, we obtain ZN0 (t) ∈
Z[[tL̄]].

In general, if A(t) =
∑
l∈L′ alt

l is a powerseries, then we discard terms cor-
responding to l /∈ L by setting A0(t) =

∑
l∈L alt

l

Theorem 7.9. Assume that G is the resolution of a Newton nondegenerate suspen-
sion singularity, with rational homology sphere link. Then

ZN0 (t) =
1− tŵt f

(1− tŵt x)(1− tŵt y)(1− tŵt z)
,
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where, on the right hand side, we restrict to variables associated with nodes only,
i.e. we set tv = 1 if v /∈ N .

Proof. We assume that sx > 1 and sy = 1. The other cases are obtained by a
small variation of this proof. Note that in this case we have s1 = 1.

In what follows, we always assume all divisors to be restricted to N . In
particular, in view of 7.1, we can make the identification ([E∗e ]tEe)αe = [E∗n]tEn

for any n ∈ N and e ∈ En. Given our assumption, we have E∗
ey1

= wt y ∈ L. This

means that if we write Z ′(t) = Z(t)(1 − tE
∗
e
y
1 ) we have Z0(t) = Z ′0(t)/(1 − twt y).

We can therefore focus on Z ′0 instead of Z0. Write

Z ′(t) =

(
1− [E∗n1

]tE
∗
n1

)sx
∏sx
i=1

(
1− [E∗exi ]t

E∗
ex
i

) · 1

1− [E∗ez1,1 ]t
E∗
ex
i

·
r∏
i=2

(
1− [E∗ni ]t

E∗ni

)si
∏si
ki=1 1− [E∗ezi,ki

]t
E∗
ez
i,ki

=

sx∏
i=1

αx−1∑
ji=0

(
[E∗exi ]t

E∗ex
i

)ji
·
∞∑
l=0

(
[E∗ez1,1 ]t

E∗ex
i

)l
·
r∏
i=2

si∏
ki=1

N−1∑
li,ki=0

(
[E∗ezi,ki

]t
E∗ez
i,ki

)li,ki
Considering the presentation for H given in 7.6, one sees that if the coefficient
sx∏
i=1

[E∗exi ]ji · [E∗ez1,1 ]l ·
r∏
i=2

si∏
ki=1

[E∗ezi,ki
]lki =

[
sx∑
i=1

jiE
∗
exi

+ lE∗ez1,1 +

r∑
i=2

si∑
ki=1

lkiE
∗
ezi,ki

]

is trivial and 0 ≤ ji < αx, then in fact ji is constant and both
∏sx
i=1[E∗exi ]ji and

[E∗ez1,1 ]l ·
∏r
i=2

∏si
ki=1[E∗ezi,ki

]lki are trivial. Therefore we get

Z ′0(t) =

 sx∏
i=1

αx−1∑
ji=0

(
[E∗exi ]t

E∗ex
i

)ji
0

·

 1

1− [E∗ez1,1 ]t
E∗
ex
i

.

r∏
i=2

si∏
ki=1

N−1∑
li,ki=0

(
[E∗ezi,ki

]t
E∗ez
i,ki

)ki
0

and  sx∏
i=1

αx−1∑
ji=0

(
[E∗exi ]t

E∗ex
i

)ji
0

=

αx−1∑
j=0

t
j
(
E∗ex1

+···+E∗exsx

)
=

1− tαx wt x

1− twt x

We have tαx wt x = tsxE
∗
n1 = ([E∗ez1,1 ]t

E∗ez1,1 )N by 7.1. Thus, we may continue

Z ′0(t) =
1

1− twt x
·

1−
(

[E∗ez1,1 ]t
E∗ez1,1

)N
1− [E∗ez1,1 ]t

E∗
ex
i

r∏
i=2

si∏
ki=1

N−1∑
li,ki=0

(
[E∗ezi,ki

]t
E∗ez
i,ki

)ki
0

=
1

1− twt x
·

 r∏
i=1

si∏
ki=1

N−1∑
li,ki=0

(
[E∗ezi,ki

]t
E∗ez
i,ki

)li,ki
0

.
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From lemma 7.6 one sees that
∏r
i=1

∏si
ki=1[E∗ezi,ki

]li,ki is trivial (assuming 0 ≤
li,ki < N) if and only if li,ki is constant. Thus, r∏

i=1

si∏
ki=1

N−1∑
li,ki=0

(
[E∗ezi,ki

]t
E∗ez
i,ki

)li,ki
0

=

N−1∑
l=0

(
r∏
i=1

si∏
ki=1

t
E∗ez
i,ki

)l
=

1− tN ŵt z

1− tŵt z
.

We therefore get, using lemma 7.7,

Z0 =
1

1− tŵt y
· 1

1− tŵt x
· 1− tŵt f

1− tŵt z

which finishes the proof. �

8 An example
Let

f(x, y, z) = x9 + x4y2 + x2y4 + y7 + z7.

In this case we have N = 7 and by theorem 1.2

sx = 7, αx = 2, s1 = 1, sy = 1, αy = 2, s3 = 7,

sz = s1 + s2 + s3 = 1 + 2 + 1 = 4.

By lemma 7.3, we have |H| = 7326 = 21952, and

PF (t) = ZN0 (t) =
1− t14

1 t
42
2 t

126
3

(1− t31t72t14
3 )(1− t21t72t35

3 )(1− t21t62t18
3 )

.

z7

y7 = xa0yb0

x2y4 = xa1yb1

x4y2 = xa2yb2

x9 = xa3yb3

−3

−6
−7−7

−1
−1

−9

Figure 2. Unmarked vertices have Euler number −2.
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