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Abstrat

Using the path lattie ohomology we provide a oneptual

topologial haraterization of the geometri genus for ertain

omplex normal surfae singularities with rational homology

sphere links, whih is uniformly valid for all superisolated and

Newton nondegenerate hypersurfae singularities. In this talk

we will fous on the Newton nondegenerate ase.

The ontent is to be published in JEMS in a joint artile with

Némethi András.



De�nitions

◮
Let (X , 0) be a surfae singularity, i.e. the germ of a two

dimensional analyti spae. We always assume that 0 is an

isolated singularity of X .

◮
The geometri genus is the rank of the �rst ohomology of any

resolution of X . That is, let X̃ → X be a resolution; then

p

g

= h

1(X̃ ,O
X̃

).

◮
Let M be the link of X . This means that given an embedding

(X , 0) →֒ (CN , 0), we have M = X ∩ S

2N−1

ǫ for 0 < ǫ ≪ 1.

We will always assume that H

1

(M, Q) = 0.

◮
We want to reover p

g

from M.



Notation�the resolution graph

◮
Let (X̃ ,E ) → (X , 0) be a good resolution. In partiular, X̃ is a

manifold and E is a normal rossing divisor. Denote by G the

orresponding graph and V its vertex set. Then E = ∪
v∈VEv .

◮
By a yle we always mean a linear ombination of the

irreduible omponents E

v

of the exeptional divisor with

oe�ients in Z or Q.

◮
The antianonial yle is the unique yle Z

K

(supported on

E ) numerially equivalent to an antianonial divisor. It an be

identi�ed by the adjution formulas (Z
K

,E
v

) = E

2 − 2g

v

+ 2

(in our setup, we always have g

v

= 0).

◮
Note that the graph G and the link M determine eah other,

modulo a small list of operations on the graph (Neumann).



Computation sequenes

A omputation sequene γ = (Z
i

)k
i=0

is a sequene of yles

satisfying

◮
Z

0

= 0 and Z

k

= Z

K

.

◮
For all 0 ≤ i < k there is a v(i) ∈ V so that Z

i+1

= Z

i

+ E

v(i).

Suh sequenes give topologial upper bounds on p

g

. We have

p

g

= dimC

H

0(X̃ ,O
X̃

)

H

0(X̃ ,O
X̃

(−Z
K

))
.

The long exat sequene assoiated to

0 → O
X̃

(−Z
i+1

) → O
X̃

(−Z
i

) → O
E

v

(i)((−Zi ,Ev(i))) → 0

provides

dimC

H

0(X̃ ,O
X̃

(−Z
i

))

H

0(X̃ ,O
X̃

(−Z
i+1

))
≤ max{0, (−Z

i

,E
v

) + 1}. (1)



Computation sequenes

Summing this up gives

p

g

≤
k−1∑

i=0

max{0, (−Z
i

,E
v

) + 1}

with equality if and only if we have equality in 1 for all i . For lattie

ohomologial reasons we deonte the right hand side above by

euH(γ).

Theorem

Assume that X is a hypersurfae given by an equation f = 0 and f

has Newton nondegenerate prinipal part. Assume further that

H

1

(M, Q) = 0. Then there exists a omputation sequene γ on the

minimal good resolution graph of X for whih p

g

= euH(γ).
Furthermore, this sequene an be obtained diretly from the

plumbing graph of M.



Notation�the resolution graph

◮
For v ∈ V, let δ

v

be the number of neighbours to v in G .

◮
Let N be the set of nodes, that is, verties v with δ

v

≥ 3.

◮
Let E be the set of ends, that is, verties v with δ

v

= 1.



Newton diagrams

◮
Let f ∈ OC3,0 be given by a powerseries as f =

∑
α
aαx

α
. Let

supp f = {α ∈ N3 | aα 6= 0}.

◮
The Newton polyhedron of f is

Γ+(f ) = onv(supp(f ) + R3

≥0

).

◮
Let F be the set of faes of the Newton polyhedron and F



the set of ompat ones. Then Γ(f ) = ∪F


is the Newton

diagram of f .

◮
Assuming nondegeneray, Oka onstruted an embedded

resolution of ({f = 0}, 0) ⊂ (C3, 0) whose graph is �dual� to

the Newton diagram. From now on, G is this resolution.

◮
Braun and Némethi proved that, assuming some weak

onditions on the diagram (obtained after an equisingular

deformation), G is the minimal good resolution graph.

◮
There is a bijetion N ↔ F



, n 7→ F

n

so that n, n′ ∈ N are

onneted in G by a bamboo if and only if dim(F
n

∩ F

n

′) = 1.



Example

On the piture below we see the diagram of

f = x

4 + x

3

y

2 + y

10 + x

2

z

3 + y

3

z

4 + z

8

.

 

Figure: A Newton diagram and the orresponding resolution graph



Newton diagrams for divisors

◮
For eah n ∈ N let ℓ

n

be the unique integral primitive

funtional on R3

taking onstant positive value on F

n

. These

de�ne weights on the monomials.

◮
One an assign funtionals ℓ

v

to all v ∈ V so that for all

v ∈ V we have E

2

v

ℓ
v

+
∑

u

ℓ
u

+ ℓ
v

∗ = 0 where we sum over

neigbours of v . Here

◮ ℓ
v

∗ = 0 if v /∈ E .
◮

If v ∈ E is the end of a bamboo between F ∈ F


and

F

′ ∈ F \ F


,then ℓ
v

∗
is the support funtion of F

′
.

◮
Let Ve = V ∪ {v∗|v ∈ E}. For a yle Z =

∑
v

m

n

(Z )E
v

let

Γe+(Z ) = {α ∈ R3 | ∀v ∈ Ve : ℓ
v

(α) ≥ m

v

(Z )}

where we set m

v

∗(Z ) = −1 for v ∈ E .



Weights and valuations

Let g ∈ OC3,0 and ḡ ∈ O
X ,0 its restrition. Let v ∈ V.

◮
Let wt

v

g = min

p∈supp g ℓ
v

(p).

◮
Let wt g =

∑
v

wt

v

(g)E
v

.

◮
Let div

v

ḡ be the order of vanishing of the pullbak of ḡ to X̃ .

◮
Let div g = div ḡ =

∑
v

div

v

(g)E
v

.

Oka proved the formula

Z

K

− E = wt f − wt(xyz)

whih yields

Γ+(Z
K

− E ) = Γ+(f ) − (1, 1, 1).



A relative Artin yle

For any Z ∈ L there exists a (Z ) satisfying

◮
For n ∈ N we have m

n

((Z )) = m

n

(Z ).

◮
For v ∈ V \ N we have ((Z ),E

v

) ≤ 2− δ
v

.

◮
(Z ) is minimal with respet to the above onditions.

This satis�es the following:

◮
Monotoniity: If Z

1

≤ Z

2

then (Z
1

) ≤ (Z
2

).

◮
Idempoteny: ((Z )) = (Z ).

◮
We have (Z

K

− E ) = Z

K

− E and (0) = 0 (unless our

singularity is A

n

, but this ase is not interesting).

◮
If Z ≤ (Z ), we an ompute (Z ) indutively as follows:

Take Z

0

= Z . Next, assume that we have onstruted

Z

0

, . . . ,Z
i

and that Z

i

6= (Z ). Then there is a v(i) so that

(Z
i

,E
v(i)) > 2− δ

v(i). De�ne Z

i+1

= Z

i

+ E

v(i). This

sequene ends with (Z ).



The sequene

The sequene is onstruted as follows:

◮
Let Z̄

0

= 0.

◮
Assume we have Z̄

i

for some i and that Z̄

i

< Z

K

− E . Choose

v̄(i) ∈ N so that m

v̄(i)(Z̄i )/mv̄(i)(ZK − E ) is minimal and set

Z̄

i+1

= (Z̄
i

+ E

v(i))

◮
Using monotoniity and itempoteny, one quikly obtains

Z̄

i

+ E

v(i) ≤ (Z̄
i

+ E

v(i)), whih yields a sequene between Z̄

i

and Z̄

i+1

.

◮
These onnet together to form a sequene (Z

i

) from 0 to

Z

K

− E .

◮
This su�es as, in fat,

H

0(X̃ ,O
X̃

(−Z
K

)) = H

0(X̃ ,O
X̃

(−(Z
K

− E ))).



The plan of the proof

◮
For all i let P

i

= N3 ∩ Γe+(Z
i

) \ Γe+(Z
i+1

). This gives a
partition N3 \ Γe+(Z

K

− E ) =
∐

i

P

i

.

◮
We want equality in the inequality

dimC

H

0(X̃ ,O
X̃

(−Z
i

))

H

0(X̃ ,O
X̃

(−Z
i+1

))
≤ max{0, (−Z

i

,E
v

) + 1}.

◮
This is obtained by proving

max{0, (−Z
i

,E
v

) + 1} ≤ |P
i

| ≤ dimC

H

0(X̃ ,O
X̃

(−Z
i

))

H

0(X̃ ,O
X̃

(−Z
i+1

))
.

◮
In partiular, we reover the well known formula

p

g

= |N3 \ Γe+(Z
K

− E )| = |Z3

>0

\ Γ+(f )|.



What is this P

i

?

◮
For n ∈ N , let

F

n

(Z
K

− E ) = Γ
n

(Z
K

− E ) ∩ {ℓ
n

= m

n

(Z
K

− E )}, that is, the
fae of Γ

n

(Z
K

− E ) orresponding to n and C

n

= R≥0

F

n

.

◮
From the onstrution of the sequene Z

i

one proves

P

i

= C

v(i) ∩ {ℓ
v(i) = m

v(i)(Zi )} ∩ Z3.

A simple manipulation shows that

P

i

= {p ∈ Z3 | ℓ
v(i) = m

v(i)(Zi ), ∀u ∈ V
v(i) : ℓ

u

(p) ≥ m

u

(Z
i

)}.

◮
By Oka's onstrution, if u is a neighbour of v(i), then ℓ

u

restrits to a primitive funtion on the hyperplane {ℓ
v(i) = m}.

◮
(In fat, ompliations arise for integral points in the

intersetion of two ones, but these are tehnial and tedious

and do not ause any serious obstrutions)
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Figure: The set P

i

sits inside the triangle shown



Polygons and intersetion numbers

The following lemma only holds for very speial polygons F , but

lukily, these are exatly the ones that show up in our alulations.

Lemma

Let A be a two dimensional a�ne spae with a lattie L and F ⊂ A

a polygon given by integral primitive a�ne funtions ℓ
j

: A → R

and values −1 < r

j

≤ 0. That is, F = {a ∈ A | ℓ
j

(a) ≥ r

j

}. Then
the funtion

∑
j

ℓ
j

has onstant value  satisfying

|F ∩ L| = max{0,  + 1}.

This lemma is applied to the ase of A = {ℓ
v(i) = m

v(i)(Zi )} and

the restritions ℓ
u

|
A

for neighbours u of v(i). More preisely, take

p ∈ A and write Z

i

=
∑

m

v

E

v

.

(−Z
i

,E
v(i)) = − E

2

v(i)mv(i) −
∑

u

m

u

= − E

2

v(i)ℓv(i)(p) −
∑

u

m

u

=
∑

u

ℓ
u

(p) −m

u

.

From the lemma we now get |P
i

| = max{0, (−Z
i

,E
v(i)) + 1}.



The seond inequality

For the last inequality it is enough to prove

◮
If α ∈ P

i

then x

α ∈ H

0(X̃ , O

X̃

(−Z
i

)).

◮
The family (xα)α∈P is linearly independent modulo

H

0(X̃ , O

X̃

(−Z
i+1

))

The �rst item is lear sine div x

α = wt x

α
. For the seond one,

take oe�ients aα for α ∈ P

i

(not all zero) and set

g =
∑

α∈P
i

aαx
α
. One proves easily that the set P

i

is ontained in

a segment, and that this does not hold for supp f

v(i), where fv(i) is

the prinipal part of f w.r.t. the weight funtion ℓ
v(i). In partiular,

f

v(i) does not divide g , even over the ring O
X ,0[x

−1, y−1, z−1]. By
a lemma of Ebeling and Gusein-Zade, this means that

div

v(i) g = wt

v(i) g , hene g /∈ H

0(X̃ ,O
X̃

(−Z
i+1

)). This proves
the seond item.


