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Abstract

We give a description of the Milnor �ber and the monodromy of a sin-
gularity of the form f + zg = 0, where f and g de�ne germs of plane curve
singularities and have no common components. In particular, this gives a de-
scription of the boundary of the Milnor �ber. The description depends only
on the topological type of the two plane curve germs de�ned by f and g. As a
corollary, we give a simple formula for the monodromy zeta function and the
Euler characteristic of the �ber in terms of an embedded resolution of f and
g.
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1 Introduction

Let Φ : (C3, 0)→ (C, 0), (x, y, z) 7→ f(x, y)+zg(x, y) be the germ of a function,
where f, g : (C2, 0)→ (C, 0). We require that f and g have no common factors
and that both germs are singular (if either f or g is nonsingular, see section 3).
We determine the di�eomorphism type of the Milnor �ber FΦ, as well as the
monodromy zeta function, in terms of a simultaneous embedded resolution
graph of f and g. For a precise statement, see Theorem 3.3 and its corollaries.

The result yields, in particular, a description of the boundary ∂FΦ. This
boundary is known to be a plumbed manifold, see [9] and citations therein.
This result was extended in [4] for certain real analytic map germs.

Singularities of the above type play an important role in the investigations
of sandwiched singularities, see [2].

In section 2 we recall some topological properties of hypersurface singular-
ities with emphasis on non-isolated singularities and the singular Milnor �ber,
as well as some properties of plane curve singularities. Finally, we recall the
notion of a 4 dimensional handlebody and �x some notation for surgery.
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In section 3 we construct a subset Tf,g of a common embedded resolution
of f and g from tubular neighbourhoods around some divisors. We obtain the
space Ff,g by performing surgery along certain embedded disks in Tf,g. This
surgery does not change the homotopy type. Our main theorem states that
Ff,g has the same di�eomorphism type as the Milnor �ber FΦ. Furthermore,
Ff,g can be decomposed into a union of sets on which the monodromy can
be completely described. As a corollary, we obtain a simple formula for the
monodromy zeta function and the Euler characteristic χ(FΦ).

Section 4 contains the proof of the main statement of the article, Theo-
rem 3.3.

2 Hypersurface singularities

2.1 General results

In this subsection we recall some of the general properties of the Milnor �ber
of a holomorphic germ f : (Cn+1, 0) → (C, 0), the monodromy associated to
such a germ, and other invariants related to these two.

Let f : (Cn+1, 0)→ (C, 0) be a hypersurface singularity, denote by Bδ the
closed ball with radius δ around the origin in Cn+1, and by Dε the closed disk
around the origin in C with radius ε. D will denote an arbitrary closed disk in
the complex plane. Let Vf = {z ∈ Cn+1 : f(z) = 0} and Sf = {z ∈ Vf : ∂f =
0}. The link of f is de�ned as K = Vf ∩ ∂Bδ for 0 < δ � 1.

The Milnor �ber Ff of f is by de�nition the �ber f−1(ε)∩Bδ for 0 < ε�
δ � 1. Then Ff is a smooth 2n dimensional manifold, and so has the homotopy
type of a CW complex. In [8], Milnor proves that Ff is homotopy equivalent
to a �nite n-dimensional CW-complex. Moreover, if s is the dimension of the
singular locus Sf , then Ff is (n− s− 1)-connected, as proved in [6].

Let E = f−1(∂Dε) ∩ Bδ. The function E → ∂Dε, z 7→ f(z) is a locally
trivial �ber bundle with �ber Ff . If T = {z ∈ ∂Bδ : |f(z)| < ε}, we can
de�ne another �ber bundle ∂Bδ \ T → ∂D1, z 7→ f(z)/|f(z)|. These two �ber
bundles are isomorphic. In fact, there is a bundle-isomorphism E → ∂B \ T
which restricts to the identity on ∂T . In particular, we have a di�eomorphism

Ff
∼
= {z ∈ ∂Bδ \ T : f(z)/|f(z)| = 1}. (2.1)

The singular �ber of f is de�ned as

Ff,sing = {z : |z| = δ, |f(z)| > 0, f(z)/|f(z)| = 1} ∪K.

Usually, Ff,sing is not a smooth manifold. By the description of Ff in eq. (2.1),
we have an inclusion ι : Ff ↪→ Ff,sing. If f is an isolated singularity, ι is
a homotopy equivalence, as proved in [8]. For non-isolated singularities this
does generally not hold.

Remark 2.1. In the above de�nition of the Milnor �ber, and in the following
discussion of the Milnor �bration, one may replace the standard ball Bδ by a
neighbourhood of the form Bρ

δ = {z ∈ Cn+1 : ρ(z) ≤ δ} where ρ is any real
analytic function ρ : (Cn+1, 0)→ [0,∞[ satisfying ρ−1(0) = {0}, see e.g. [7]. In
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fact, in the case n = 2, one may take instead of Bδ the ball B
α,β
δ = {(x, y, z) ∈

C3 : ‖(x, y)‖α ≤ δ, |z|β ≤ δ} for some α, β ∈ Z>0. In lemma 4.3 we will assume
that the Milnor �ber is given as a subset of such a ball for some well chosen
α, β. By replacing δ with δβ , we may in fact assume that the Milnor �ber Ff
is given by f = ε, ‖(x, y)‖ ≤ δα/β and |z| ≤ δ.

2.2 The zeta function of the monodromy

The monodromy of the Milnor �bration is a di�eomorphism mf : Ff → Ff
with the property that this bundle is isomorphic to the bundle given by
Ff × I/((p, 0) ∼ (mf (p), 1)) → I/(0 ∼ 1), (p, t) 7→ t. The monodromy is
determined by the bundle up to isotopy, and the bundle is determined up
to bundle isomorphism by the monodromy. The monodromy induces linear
isomorphisms hi : Hi(Ff ;C)→ Hi(Ff ;C).

We call the product

ζf (t) =

∞∏
i=0

det(I − thi)(−1)i+1

the zeta function associated with the singularity f . This product is well de�ned
because Ff is a �nite CW complex, and so dimCH∗(Ff ;C) < ∞. The zeta
function behaves multiplicatively in the following sense.

Let C be a subset of Ff so that dimH∗(C;C) < ∞ and mf restricts to a
homeomorphism mC : C → C. Let us call such a subset good with respect to
m. Then mC induces a linear automorphism hC,i on Hi(C;C) and we de�ne

ζC(t) =
∞∏
i=0

det(I − thC,i)(−1)i+1
.

The following propositions are well known. For the �rst one, see e.g. [3], I.4.3.
The second one can be read from the results of in [1], but is easier to prove by
hand.

Proposition 2.2. Assume that A,B ⊂ Ff so that A,B,A ∩ B are good sub-

sets of Ff and the interiors of A and B cover Ff . Then we have ζf (t) =
ζA(t)ζB(t)ζA∩B(t)−1.

Proposition 2.3. We have χ(Ff ) = −deg(ζf ), where we extend deg multi-

plicatively to the �eld of rational function, i.e. deg(a/b) = deg(a)− deg(b) for

a, b ∈ C[t], b 6= 0.

The monodromymf can be extended to a homeomorphismmf,sing : Ff,sing →
Ff,sing, which is called the singular monodromy. In fact, by de�ning Ff,sing,θ in
the same way as Ff,sing, only replacing the condition f/|f | = 1 by f/|f | = θ,
we get a subspace ∪θFf,sing,θ × {θ} ⊂ S2n+1 × S1. The projection onto S1 is
a locally trivial �ber bundle with �ber Ff,sing; its monodromy is the singular
monodromy.
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2.3 Plane curves

In the case n = 1, f is a plane curve singularity. For a detailed introduction to
plane curves see [10]. For a more topological treatment of general open book de-
compositions, see e.g. [3] I.3 and I.4. Note that the �rst reference deals mainly
with the reduced case, whereas the second one allows arbitrary multiplicities.
Write f = fα1

1 fα2
2 · · · f

αk
k where f1, . . . , fk are the k di�erent irreducible fac-

tors of f . In this case, K is a link in ∂Bδ. Let T be a tubular neighbourhood
around K and T the corresponding closed tubular neighbourhood. There ex-
ists a projection c : T → K which is a trivial D-bundle, this is just the normal
bundle of the link. Write further K = ∪ki=1Ki, where Ki = {z ∈ ∂Bδ : fi = 0},
and T = ∪ki=1Ti, where Ti is the component of T containing Ki. Choosing
ε > 0 small enough, we can choose T = {z ∈ ∂Bδ : |f(z)| < ε}. Then
∂Ff ⊂ ∂T . The projection c can be chosen in such a way that the restriction
ci = c|Ff∩∂T̄i : Ff ∩∂Ti → Ki is a covering map. This map can be described in
terms of the embedded resolution graph of f ; we recall some of its properties.

Let Γf = (V, E) be the embedded resolution graph of some �xed embedded
resolution of f (see [10] for de�nition and properties). Here V is the set of
vertices and E the set of edges. Write V = W q Af where Af consists of
the arrowhead vertices of Γ and W consists of the nonarrowhead vertices.
The elements of Af correspond to the branches of f so there is a natural
correspondence between the arrowhead vertices of Γ and the components of
K. We will make no distinction between the indices i = 1, . . . , k and the
corresponding a ∈ Af .

For each a ∈ Af there exists a unique wa ∈ W so that (wa, a) ∈ E . The
map f has multiplicity αa on a, letmwa be its multiplicity on wa. Then Ff ∩Ta
has gcd(αa,mwa) components, and restricting ca to any of these components
gives a covering of degree αa/ gcd(αa,mwa). The singular �ber Ff,sing of f is
homeomorphic to the space Ff/ ∼ where the equivalence relation ∼ is given
by z1 ∼ z2 if and only if z1, z2 ∈ Ff ∩ Ta for some a, and ca(z1) = ca(z2).

The monodromy mf : Ff → Ff can be chosen so that it preserves this
equivalence relation, that is, x1 ∼ x2 if and only if m(x1) ∼ m(x2). Therefore,
we get a homeomorphism Ff,sing → Ff,sing induced by the monodromy. It is
clear that under the identi�cations already made, this is nothing else than the
singular monodromy already constructed. Note that Ff,sing = Ff ∪ B where
both B and Ff ∩B are homotopically equivalent to the disjoint union of copies
of S1 (here, the set B is a disjoint union of sets of the form S1×R where R is
a union of segments in the plane with one endpoint at the origin). Moreover,
these homotopy S1's contract to actual copies of oriented S1's. The singular
monodromy mf,sing restricts to a homeomorphism Ff → Ff which coincides
with the monodromy mf . Also, mf,sing permutes the connected components
of B and Ff ∩ B, respecting the orientation on the �rst homology. Thus, the
induced maps on the homologies ofB and Ff∩B are zero in degree> 1, and can
be represented by the same permutation matrix in degrees zero and one. These
cancel out to give ζB(t) = ζFf∩B(t) = 1, and therefore, by Proposition 2.2,

Proposition 2.4. If f : (C2, 0) → (C, 0) de�nes a plane curve singularity,

then ζf (t) = ζf,sing(t).
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2.4 Handles and surgery

We will use handles to describe the Milnor �ber. More precisely, we will use
4 dimensional handles of index 2 in our construction. Chapter 4 of [5] gives a
good presentation of the necessary theory.

Let X be a 4-manifold with boundary and φ : (∂D) × D → ∂X an em-
bedding. We obtain a new manifold X ∪φ D×D by taking the disjoint union
X q (D ×D) and then identifying any point x ∈ (∂D)×D with φ(x) ∈ ∂X.
The map φ induces an isomorphism between the normal bundles of (∂D)×{0}
in (∂D)×D and φ((∂D)×{0}) in ∂X. Since (∂D)×{0} ⊂ (∂D)×D already
comes with a canonical framing, this isomorphism can be speci�ed by a fram-
ing on φ((∂D) × {0}). The di�eomorphism type of the resulting manifold is
determined by the following data (see for example [5]):

• The embedding φ|(∂D)×{0} of (∂D)× {0} ∼= S1 into ∂X.

• The framing of the normal bundle of φ|(∂D)×{0}.

We will now �x some notation for surgery along embedded disks. We will
assume that all maps respect orientation when appropriate. Let X be an ori-
ented 4 dimensional manifold with boundary and ι : D̄ ↪→ X an embedding
of the closed disk. We assume that the boundary ∂D̄ is embedded into the
boundary ∂X, and that ι(D̄) is transversal to ∂X. We can �nd a parametri-
sation ψ : D̄ × D̄ → X of a closed tubular neighbourhood of ι(D̄) so that
ψ(0, z) = ι(z), and ψ|D̄×∂D̄ is a parametrisation of a tubular neighbourhood
of ι(∂D̄) ⊂ ∂X. De�ne X ′ = X \ψ(D×D̄). For k ∈ Z let Xι,k = X ′∪tk D̄×D̄,
where the glueing map tk : D̄ × ∂D̄ → X ′ is given by tk(x, y) = ψ(x, xky).

De�nition 2.5. We call Xι,k constructed above the k-th twist of X along
ι(D̄).

Note that Xι,k is obtained by thinking of ψ(D̄× D̄) as a handle, removing
it, and then attaching it again via a di�erent glueing map. This construction is
very similar to Dehn surgery. In fact, ∂Xι,k is nothing else than ∂X, to which
a Dehn surgery with coe�cient 1/k has been applied along ι(∂D̄).

3 Description of the �ber

In this section we start by �xing some notation for an embedded resolution of
the plane curves f and g. Using this data, we de�ne subsets of the resolution
which, after a simple surgery provide the Milnor �ber by Theorem 3.3. Let
f, g : (C2, 0)→ (C, 0) be any plane curve singularities without common factors
and de�ne

Φ(x, y, z) = f(x, y) + zg(x, y).

Before going through these constructions, we make a remark on the case when
f or g is nonsingular, as well as on the singular locus of Φ. Clearly, if f is
nonsingular, then Φ is nonsingular as well. If g is nonsingular, we may assume
g(x, y) = y. Writing f(x, y) = f0(x) + yf1(x, y), we �nd f0 6= 0 since f, g
have no common components. Thus, if o is the order of f0, then it has an
oth root x̂. Replacing the coordinates x, y, z with x̂, y, z + f1(x, y), we �nd
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that Φ is equivalent to xn + yz, i.e. is of type An. Now, assuming that f, g
are both singular, it is clear that the singular locus of Φ contains the z axis.
Furthermore, we have ∂zΦ = g, so Φ restricts to f along SΦ. We therefore get
f = g = 0 along SΦ, which implies that the singular set is precisely the z axis.

3.1 An embedded resolution of f and g

Consider a �xed common embedded resolution φ : V → C2 of f and g. The
resolution graph of this embedded resolution will be denoted by Γ. Denote its
set of vertices by V and the set of edges by E . We write V = W q A where
W is the set of non-arrowhead vertices and A the set of arrowhead vertices.
We decompose A further as A = Af qAg, where the elements of Af and Ag
correspond to components of the strict transform of f and g respectively. A
vertex v ∈ V corresponds to a component Ev of the exceptional divisor φ

−1(0),
or the strict transform of f or g. In each case, we denote bymv the multiplicity
of f on Ev, and lv the multiplicity of g on Ev. In particular, mv = 0 if and
only if v ∈ Ag and lv = 0 if and only if v ∈ Af .

Let f ′ = f ◦ φ, g′ = g ◦ φ and F ′f = (f ′)−1(ε) ∩ φ−1(Bδ) = φ−1(Ff ). The

map V \ φ−1(0)→ C2 \ {(0, 0)}, r → φ(r) is a di�eomorphism. In particular,
it restricts to a di�eomorphism F ′f → Ff .

We have a map φ× idC : V ×C→ C3 which restricts to a di�eomorphism
(V \ φ−1(0)) × C → C3 \ {(0, 0, z) : z ∈ C}. We set Φ′ = Φ ◦ (φ × idC), and
F ′Φ = (φ× idC)−1(FΦ). Clearly, F ′Φ is di�eomorphic to FΦ.

3.2 Construction of the �ber

Using the resolution graph Γ de�ned above, we now construct a space which,
as we will see in the next subsection, is di�eomorphic to the Milnor �ber. For
each w ∈ W, choose a small tubular neighbourhood Tw around Ew in V and
a map bw : Tw → Ew which is a smooth open disk bundle. Denote by Tw
the corresponding closed tubular neighbourhood. These can be chosen so that
they satisfy the following properties:

• If w,w′ ∈ W and (w,w′) ∈ E , then we have b−1
w (Ew ∩ Ew′) = Ew′ ∩ Tw

and b−1
w (Ew ∩ Tw′) = Tw ∩ Tw′ .

• If w ∈ W, a ∈ A and (w, a) ∈ E , then b−1
w (Ew ∩ Ea) = Ea ∩ Tw.

Then the set T = ∪w∈WTw is the plumbed 4-manifold with plumbing graph
Γ.

If w,w′ ∈ W and e = (w,w′) ∈ E , then we let Te = Tw∩Tw′ . If w ∈ W and
a ∈ A so that e = (w, a) ∈ E , then we pick a small disk-shaped neighbourhood
Ua in Ew around Ew ∩ Ea and let Ta = Te = b−1

w (Ua). Then Ta is a tubular
neighbourhood around Ea in T .

The Milnor �ber FΦ can be described in terms of the embedded resolution
graph Γ, with the additional arrowhead vertices, and all vertices decorated by
the multiplicities of f ′ and g′. This description will depend on which of the
two functions f ′ and g′ has higher multiplicities on the exceptional divisors.
The following de�nition makes this precise.
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De�nition 3.1. • Let W1 = {w ∈ W : mw ≤ lw} and W2 =W \W1. Let
Γi be the subgraph of Γ generated by the set Wi. De�ne Ti = ∪w∈WiTw.

• Let Af,i = {a ∈ Af : wa ∈ Wi} and Tf,i = ∪a∈Af,i
Ta. Repeat this with

f replaced by g.

• Choose a small ε > 0 and let Tε be a small tubular neighbourhood around
f ′−1(ε) ∩ T .

• Let T ′ be a small tubular neighbourhood around the exceptional divisor
inside T . This is chosen after choosing ε. In particular, T

′ ∩ T ε = ∅.

• Let T f,g = [T f,1 \ T ′] ∪ T ε ∪ [T 2 \ (T ′ ∪ Tg,2)], where denotes closure.

• Let T ′g be a tubular neighbourhood around the strict transform of g,
chosen small with respect to the above.

De�nition 3.2. We de�ne Ff,g to be a twisting of Tf,g along the strict trans-
form of g. More precisely, for any a ∈ Ag, the set Ea ∩ Tf,g is a union of mw

disks embedded in Tf,g as in subsection 2.4, where w ∈ W so that (a,w) ∈ E .
Take the la-th twist along each of these disks.

3.3 Main theorem and corollaries

We keep here the notation de�ned in the previous subsections.

Theorem 3.3. The Milnor �ber FΦ is di�eomorphic to the space Ff,g con-

structed above. The monodromy can be chosen to satisfy the following

• The set T f,1 \ T ′ is invariant under mΦ and the restriction is homotopic

to the identity.

• We have mΦ|Ff
= mf

• The set T2 \ (T ′ ∪ T g,2) is invariant under mΦ and the restriction is

homotopic to the identity.

• For any a ∈ Ag,2, the monodromy mΦ permutes the mwa handles corre-

sponding to a cyclically.

The proof of Theorem 3.3 is postponed until section 4.

Corollary 3.4. For w ∈ W, let δw,f be the number of vertices in W ∪ Af
connected to w by an edge.

(i) The Euler characteristic of FΦ is given by the formula

χ(FΦ) =
∑
w∈W1

mw(2− δw,f ) +
∑

a∈Ag,2

mwa .

(ii) The zeta function associated to Φ is given by the formula

ζΦ(t) =

 ∏
w∈W1

(1− tmw)δw,f−2

 ∏
a∈Ag,2

(1− tmwa )−1

 (3.1)
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Proof of corollary. By Proposition 2.3, it is enough to prove eq. (3.1).
Consider �rst the action of mΦ on T f,g \ T2. Using a similar argument as

in subsection 2.3, we see that the zeta function of the restriction is the same
as that of the restriction to Ff ∩ T 1 \ T2. An A'Campo type argument shows
that this zeta function is ∏

w∈V(Γ1)

(1− tmw)δw,f−2. (3.2)

Consider now the set T 2 ∩ T f,g. It has the homotopy type of a 3-manifold
with some solid tori removed. In particular, χ(T 2 \ T ′) = 0. We can now use
the same proof as that of Corollary 3.5(ii) to see that the zeta function of the
restriction to Tf,g ∩ T 2 is (

∏
a∈Ag,2

(1− tmwa )−1).

The intersection (T f,g \T2)∩ (T f,g ∩T 2) is a disjoint union of circles which
are cyclically permuted by the monodromy. The zeta function of the mon-
odromy restricted to these circles is therefore 1.

Finally, using Proposition 2.2, we can glue these zeta functions together to
get eq. (3.1).

Corollary 3.5. (i) If mw ≤ lw for all w ∈ W, then FΦ and Ff,sing have the

same homotopy type and ζΦ = ζf .

(ii) If mw > lw for all w ∈ W, then FΦ has the same homotopy type

as ∨m−1S
2, where m =

∑
a∈Ag(Γ2)mwa. The zeta function is given by

ζΦ(t) =
∏
a∈Ag

(1− tmwa ).

Proof. In (i) we have T2 = ∅. Twisting the handles corresponding to elements
a ∈ Ag does not alter the homotopy type. Therefore, FΦ has, by Theorem 3.3,
the same homotopy type as T ε∪T f,1. Homotopically, this space is the same as
Ff , where we have glued the boundary components to some circles. This can
easily be seen as the same construction of Ff,sing. Furthermore, this homotopy
equivalence can be seen as invariant under the actions of mΦ and mf , proving
ζΦ = ζf,sing and thus ζΦ = ζf by Proposition 2.4. For a second proof of this
statement, one may compare A'Campo's formula for ζf with Corollary 3.4.

In the case of (ii), Af,1 = ∅. We have A = T 2 \ (T ′ ∪ Tg,2) and T 2 = T .

Also, T \ T ′ is homotopically just ∂T = S3 because the graph Γ describes
a modi�cation of the smooth germ (C2, 0). In fact, T \ T ′ is a collar neigh-
bourhood around ∂T , so T \ T ′ = S3 × I. Furthermore, for a ∈ Ag, the pair
(T \T ′, T a∩ (T \T ′)) is isomorphic to the pair (S3× I, S× I) where S ⊂ S3 is
a solid torus. Therefore, A is homotopically S3 with some solid tori removed,
one for each element of Ag. What's more, the attaching spheres of the handles
are meridians of these tori. But removing a solid torus from a 3 manifold and
adding m handles attached to meridians is equivalent to removing m spheres
from the original manifold. This gives the same as ∨m−1S

2.
The statment about ζΦ follows from Corollary 3.5

Example 3.6. Let f(x, y) = xd and g = yd where d ≥ 2. Then we can
choose the resolution V so that V has a single element, say V = {v}. Then
mv = lv = d, so we can apply Corollary 3.5(i). The Milnor �ber FΦ associated
to Φ has the same homotopy type as Ff,sing, which is up to homotopy a
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bouquet of d− 1 two-spheres. Note that in spite of this, Φ is not isolated. The
zeta function of this singularity is ζ(t) = td − 1.

4 Proof of Theorem 3.3

In this �nal section we prove Theorem 3.3. To do so, we project the embedded
resolution V × C → C3 down to V , and study the image of the �ber F ′Φ.
Denote the projection by p. Choose r ∈ V with the property that g′(r) 6= 0.
Assume further that there exists a z ∈ C such that Φ′(r, z) = ε. We can solve
this equation for z, namely

z =
ε− f ′(r)
g′(r)

.

This means that p restricts to an injection F ′Φ \ (Stg × C) → V , where Stg
is the strict transform of g. De�ne a function Z : V \ Stg → C by Z(r) =
(ε− f ′(r))/g′(r). This way, we get a di�eomorphism F ′Φ \ Stg ×C→ X where

X = {r ∈ V \ Stg : |Z(r)| ≤ δ}.

We obtain a description of FΦ
∼= F ′Φ by considering the sets F ′Φ ∩ p−1(T \ Tg)

and F ′Φ ∩ p−1(T g), and how they glue together along their intersection. In
fact, the following theorem is a reformulation of Theorem 3.3 in this language.
Proving Theorem 4.1 therefore �nishes the proof of Theorem 3.3.

Theorem 4.1. The following items determine the Milnor �ber and the mon-

odromy.

(i) Let e = (a,w) ∈ E where a ∈ Af,1 and w ∈ W. There is a di�eomorphism

between p(F ′Φ) ∩ T e and T e \ T ′ inducing identity on F ′f ∩ ∂T e and its

normal bundle in ∂T e.

The set F ′Φ∩p−1(T e) is invariant under the monodromy, up to homotopy

the monodromy action is trivial on this set.

(ii) The set p(F ′Φ) ∩ [T 1 \ (Tf ∪ T ′g ∪ T2)] is a tubular neighborhood around

F ′f ∩ [T 1 \ (Tf ∪ T ′g ∪ T2)] in T1 \ (Tf ∪ T ′g ∪ T2).

The set F ′Φ∩p−1[T 1\(Tf ∪T ′g∪T2)] is invariant under the monodromy. It

can be chosen to coincide with mf on the subset F ′f ∩ [T 1 \ (Tf ∪T ′g ∪T2)]
which is a strong homotopy retract.

(iii) There is a di�eomorphism between p(F ′Φ) ∩ T 2 \ T ′g and T 2 \ (T ′ ∪ T ′g)
inducing identity on F ′f ∩∂(T ′∪T ′g) and its normal bundle in ∂(T ′∪T ′g).
This set is invariant under the monodromy; it's action is trivial up to

homotopy.

(iv) Let e = (a,w) ∈ E where a ∈ Ag and w ∈ W. The set p−1(T
′
g) ∩ F ′Φ

is a disjoint union of mw 4 dimensional 2-handles glued to the manifold

p(F ′Φ)\T ′g. The attaching spheres are those boundary components of F ′f ∩
(T \T ′e) which are in T

′
e. The normal bundle of the attaching spheres has

a canonical trivialisation since each component is the boundary of a disk

in T ′e. The handles are attached with the (−la)-th framing. These handles

are invariant under the monodromy, its action permutes them cyclically.
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Proof of (i). We can choose coordinates around the point Ew ∩ Ea so that
f ′(u, v) = umvn and g(u, v) = ul, where m = mw, n = ma and l = lw. We can
also suppose that T e = {(u, v) : |u|, |v| ≤ ρ} where ρ is some number so that
ε� ρ. By choices made, we have m ≤ l and n > 0.

Consider the space T̃e = {(u, ṽ) : |u|, |ṽ|1/n < ρ} and the map πe : T e → T̃e
given by (u, v) 7→ (u, ṽ) = (u, vn). We have then maps

Ze(u, v) =
umvn − ε

ul
, Z̃e(u, ṽ) =

umṽ − ε
ul

satisfying Z̃e ◦ πe = Ze. The function |Z̃e|2 has the divisor umṽ = ε as a
nondegenerate critical manifold of index 0. This holds on T̃e as well as ∂T̃e.
We will show that |Z̃e|2 has no other critical manifolds (in the interior or
on the boundary) in the preimage |Z̃e|2 ≤ δ2. This will show that the set
F̃e = πe(p(F

′
Φ)∩Te) is a tubular neighbourhood around the submanifold given

by umṽ = ε, that is, πe(F
′
f ). Note �rst that the coordinate u takes nonzero

values on F̃e, since Ze has a pole along the exceptional divisor. We have then
∂ṽZe(u, ṽ) = um−l 6= 0 on F̃e. This shows that |Z̃e|2 has no critical points in
the interior T̃e, nor on the part of the boundary given by |u| = ρ. For the rest
of the boundary, we will show that if |ṽ| = ρn, then ∂uZe 6= 0. But we have

∂uZ̃e = (m− l)um−l−1ṽ + lu−l−1ε = ((m− l)umṽ + εl)u−l−1.

If m = l, then this shows that the partial derivative does not vanish. Assuming
m < l we �nd that ∂uZ̃e(u, ṽ) = 0 implies um = −εl/((m− l)ṽ). This implies

|Z̃e(u, ṽ)| =
| − εl

(m−l)ṽ − ε|

| − εl
(m−l)ṽ |l/m

=

∣∣∣∣ l

(m− l)ρn
− 1

∣∣∣∣ ∣∣∣∣(m− l)ρl

∣∣∣∣−l/m ε1−l/m,
so that |Ze(u, ṽ)| is huge, since ε is small and l > m. In particular, |Z̃e| > δ.

We have now showed that F̃e is a tubular neighbourhood around the divisor
umṽ = ε. But the same is true about the set T̃e \ πe(T ′). Thus, we have a
di�eomorphism ψ̃e : F̃e → T̃e \ πe(T ′) and we can assume that ψ̃e equals the
identity on a small neighbourhood around the divisor umṽ = ε. Now, the set
{ṽ = 0}∩ F̃e is an annulus given by |u| ≥ |ε/δ|1/l. One can now easily see that
the map ψ̃e can also be chosen to map this annulus into πe(Ea) = {ṽ = 0}.
Finally, by considering the symmetries of F̃e and T̃e, one can assume that ψ̃e
commutes with multiplying ṽ by a primitive nth root of unity. This, combined
with the fact that Fe = π−1

e (F̃e), shows that ψ̃e transfers to a di�eomorphism
ψe : Fe → Te.

Lemma 4.2. The map F ′Φ ∩ [(T 1 \ (Tf ∪T2))×C]→ D̄δ, (r, z) 7→ z is proper,

with surjective derivative everywhere. The same holds for its restriction to the

boundary.

Proof. The map is proper, since its domain is compact. The surjectivity of the
derivative requires more attention:

Let (r0, z0) ∈ F ′Φ ∩ [(T 1 \ (Tf ∪ T2)) × C]. Then, we have three cases: in
the �rst, there is a unique w ∈ W1 so that r0 ∈ Tw. Secondly, there might be
exactly two elements w,w′ ∈ W1 such that r0 ∈ Tw ∩ Tw′ . Thirdly, we might
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have r0 ∈ Te for some e = (w, a) ∈ E for some w ∈ W1 and a ∈ Ag,1. In
any case, we can �nd coordinates u, v in a neighbourhood U around r0 in V
such that f ′(u, v) = umvl and g′(u, v) = αulvk for m = mw, l = lw and some
non-vanishing function α : U → C. We have m ≤ l, and one out of three,
depending on the cases above: n = k = 0, n ≤ k or n = 0,k > 0. In any case,
we have n ≤ k.

By the inverse function theorem, the map F ′Φ ∩ U → C2, (u, v, z)→ (v, z)
is a coordinate chart, provided that ∂uΦ′ 6= 0 on F ′Φ ∩ U . We have

∂uΦ′(u, v, z) = ∂u(umvn + zαulvk) = mum−1vn + z((∂uα)ulvk + αlul−1vk)

= um−1vn(m+ zul−mvk−n(∂uαu+ αl)).

The function ul−mvk−n(∂uαu + αl) is continuous, and therefore bounded on
U (we can assume that U is relatively compact). Since |z| ≤ δ, we get

|zul−mvk−n(∂uαu+ αl)| � m.

proving that ∂uΦ′ 6= 0 on F ′Φ ∩ (U ×C). Therefore, the function z is a part of
a coordinate system around (r0, z0). In particular, its derivative is surjective.

For the last statement, the same reasoning applies; the equation ∂uΦ′ 6= 0
implies that z (as two real variables) gives part of a coordinate system on the
boundary. We omit the details.

Proof of (ii). The argument in the proof of lemma 4.2 can be transferred
directly to the boundary components p(F ′Φ) ∩ ∂T g,1. We can therefore use
Ehresmann's �bration theorem to get that the restriction of Z to the set
p(F ′Φ) ∩ [T 1 \ (Tf ∪ Tg ∪ T2)] is a locally trivial �bration over Dδ. Since
Dδ is contractible, this �bration is trivial. The �ber over 0 ∈ Dδ is simply
F ′f ∩ [T 1 \ (Tf ∪ Tg ∪ T2)]. Therefore, the set p(F ′Φ) ∩ [T 1 \ (Tf ∪ Tg ∪ T2)] is a

product F ′f ∩ [T 1 \ (Tf ∪ Tg ∪ T2)]×D. This proves the statement.

Lemma 4.3. We may assume that the inequality |f ′/g′| < δ/2 holds in T 2 \
(T1 ∪ Tg).

Proof. Let x, y be some generically chosen coordinates on C2. Assume that the
Milnor �bration is given inside a ball of the form Bδ = Bα,β

δ for some α, β ∈
Z>0 as in remark 2.1. We may then assume that F ′Φ is given by inequalities
‖(x′, y′)‖ ≤ δβ/α, where x′, y′ are the pullbacks of x, y, and |Z| < δ. In T 2 \
(T1 ∪ Tg), the function f ′/g′ vanishes along E by de�nition of W2. Since x

′

and y′ vanish along E only we have |f ′/g′| ≤ C‖(x′, y′)‖α/β in T 2 for some
C > 0 and for a suitably small α/β. Multiplying f with 2C−1, however, gives
an equivalent singularity because the germ C−1f + zg = C−1(f + Czg) is
equivalent with the germ f+zg via the coordinate change (x, y, z)↔ (x, y, Cz).
Combining the two inequalities obtained so far yields |f ′/g′| < 2δ.

Proof of (iii). We start by investigating the intersection of p(F ′Φ) with the
smaller set T 2 \ (T1 ∪ Tg). The remaining parts will be considered separately.

As before, we have

p(F ′Φ) ∩ T 2 \ (T1 ∪ Tg) = {r ∈ T 2 \ (T1 ∪ Tg) : |Z(r)| ≤ δ}.
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We will start by showing that |Z|−1 is a Morse-Bott function in T 2 \ (T1 ∪Tg)
which de�nes a small tubular neighbourhood around the exceptional divisor.
More precisely, let

N = {r ∈ T 2 \ (T1 ∪ Tg) : |Z(r)|−1 < δ−1}.

We will prove that N is a tubular neighbourhood around the exceptional
divisor in T 2\(T1∪Tg), and that it can be made arbitrarily small by shrinking ε.
The restriction of g′ to T 2\(T1∪Tg) is a holomorphic function vanishing exactly
on the exceptional divisor. Therefore, the set {r ∈ T 2\(T1∪Tg) : |g′(r)| ≥ 2ε/δ}
is the complement of a small neighbourhood around the exceptional divisor.
If r ∈ T 2 \ (T1 ∪ Tg) satis�es |g′(r)| ≥ 2ε/δ, we get

|Z(r)| =
∣∣∣∣f ′(r)− εg′(r)

∣∣∣∣ ≤ ∣∣∣∣ ε

g′(r)

∣∣∣∣+

∣∣∣∣f ′(r)g′(r)

∣∣∣∣ .
By the choice of r, we have ε/|g′(r)| < δ/2. By lemma 4.3, we also have
|f ′(r)/g′(r)| ≤ δ/2. Therefore, we get |Z(r)| ≤ δ. We have proven

N ⊂ N ′ := {r ∈ V : |g′(r)| ≤ 2ε/δ} \ (T1 ∪ Tg).

The set N ′ above can be made arbitrarily small, as a neighbourhood around
the exceptional divisor. To show that N is a tubular neighbourhood, we will
prove that the derivative of Z does not vanish in N ′ outside the exceptional
divisor. Choose coordinates u, v around r ∈ V such that f ′(u, v) = umvl and
g′(u, v) = αulvk where m = mw, l = lw for some w ∈ W2 for which r ∈ Tw
and either there is a w′ ∈ W2 so that n = mw′ and k = lw′ , or n = l = 0. In
any case, we have m > l and n ≥ k. We calculate:

∂uZ(r) =
∂

∂u

umvn − ε
αulvk

=
mum−1vnαulvk − (umvn − ε)((∂uα)ul − αlul−1)vk

(αulvk)2
.

Simplifying, we get ∂uZ(r) 6= 0 if and only if

mumvnα− (umvn − ε)((∂uα)u− αl) 6= 0. (4.1)

By assumption, we have |Z(r)| > δ, that is, |umvn − ε| > δ|αulvk|. Thus, we
prove eq. (4.1) by showing that

|mum−lvn−k| < δ|(∂uα)u− αl|. (4.2)

The number |(∂uα)u − αl| is bounded from below independently of δ and ε,
because |u| is small with respect to αl, which is bounded below. The functions
|um−lvn−k| and g′(u, v) have the same zero set, thus there is a C, γ ∈ R+

so that |mum−nvl−k| < C|g′(u, v)|γ ≤ C(2ε/δ)γ � δ. This proves eq. (4.2).
Hence, the set N is a tubular neighborhood around the exceptional divisor in
T 2 \ (T2 ∪ Tg).

Now consider an edge e = (w1, w2) ∈ E where wi ∈ Wi. We want to prove
that there is a di�eomorphism between Te ∩ p(F ′Φ) and T e \ T ′ �xing the
intersection F ′f ∩ ∂T e and its normal bundle inside ∂T e.

Consider coordinates u, v on Te so that f = umvn and g = ulvk. Let
τ1, τ2 ∈ C with |τ1| = 1. Then the set {(u, v) ∈ T e : Arg(u) = τ1, Arg(v) =
τ2, |Z(u, v)| ≤ δ} is a disk. In fact:
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• If τm1 τ
n
2 6= 1, then |Z|2 restricts to a Morse function on the manifold

{(u, v) : Arg(u) = τ1, Arg(v) = τ2}. There are no critical points on
the interior. Restricting Z to the boundary of this submanifold, we get
exactly one critical point with index zero and at most one with index
one.

• If τm1 τ
n
2 = 1, then|Z|2 restricts to a Morse-Bott function on the sub-

manifold {(u, v) : Arg(u) = τ1, Arg(v) = τ2}, the critical set being the
intersection with F ′f .

Proving these two statements is a simple exercise, it boils down to showing
that certain partial derivatives do not vanish. The results show that each �ber
of the argument map (τ1, τ2) is abstractly a disk. One is therefore free to choose
a di�eomorphism from this disk to the set of points (u, v) where the argument
of each coordinate is �xed, to the set of points with corresponding arguments
in T e ⊂ T ′. This can be done in such a way that we get a di�eomorphism with
the desired properties.

The last thing we need to consider is the set p(F ′Φ)∩ (T g,2 \T ′g,2). Let a be

in Ag,2. We have local coordinates u, v on Ta so that f = um and g = ulvk,
where m = mwa , l = lmw and k = ma. The set p(F

′
Φ)∩ (T a \ T ′a) can be given

by equations |Z| ≤ δ and |v| ≥ η for some η � ε, that is,{
(u, v) ∈ T a :

∣∣∣∣um − εulvk

∣∣∣∣ ≤ δ, |v| ≥ η}
We proved already, that the intersection p(F ′Φ)∩{|v| = ρa} is the complement
of a tubular neighbourhood around the exceptional divisor in the set {|v| =
ρa}. Take a point (u0, v0) ∈ p(F ′Φ) ∩ T a \ T ′a. From the formula Z(u, v) =
(um− ε)/(ulvk) we see that the segment between (u0, v0) and (u0, (ρa/|v0|)v0)
is contained in p(F ′Φ) ∩ (T a \ T ′a). From this, one quickly observes that the
inclusion p(F ′Φ)∩(T a\T ′a)→ T a\T ′a is isotopic to the inclusion of (T a\T ′a)\T ′
�xing a neighborhood around both F ′f ∩ (T a \ T ′a) and {|v| = ρa}.

Finally, all these di�eomorphisms glue together to the desired map.

For the monodromy, we notice that the di�eomorphism type of the pair
(F ′Φ,θ, p

−1(T 2 \ (T1 ∪ Tg)) ∩ F ′Φ,θ), where θ ∈ S1 and F ′Φ,θ = Φ′−1(θε), is

independent of θ, that is, p−1(T 2\(T1∪Tg))∩F ′Φ,θ is a subbundle of the Milnor
�bration. The description of this �ber above is independent of θ however, and
therefore gives a trivialisation of the bundle. Therefore, the monodromy acts
trivially, up to homotopy, on this subset.

Proof of (iv). Let a ∈ Ag. As before, we consider coordinates u, v on T a so

that f ′ = um and g′ = ulvk. Then Ha := F ′Φ ∩ p−1(T
′
a) is the set of points

(u, v, z) satisfying |z| ≤ δ, |v| ≤ η for some η � ε and the equality Φ′ = ε.
We show �rst that abstractly, this set is a disjoint union of bidisks. Clearly,
the map πa = (v, z) : Ha → Dη × Dδ is a proper surjection which maps
boundary points to boundary points. Also, the preimage of (0, 0) is the set
{(u, 0, 0) : um = ε}, and so contains exactly m points. By the implicit function
theorem, if ∂uΦ′ 6= 0 on H, the map πa is a local di�eomorphism, and so a
covering map. Furthermore, since the bidisk is contractible, such a covering
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map must be a product. We get

∂Φ′(u, v, z) = ∂u(um + zulvk) = mum−1 + zlul−1vk.

The function |mum−1| is bounded from below by a positive number on Ha,
since it is continuous and does not vanish. Similarly, the function |zlul−1| is
bounded from above. Taking η small enough, we get |mum−1| > |zlul−1vk| on
Ha. This gives ∂uΦ′ 6= 0 as required.

We have now shown that F ′Φ is given by glueing handles (such as h) to
Tf,g \ T ′g in the way described in subsection 2.4. We only have to determine
the twisting coe�cient. We already have a parametrization of the handle h by
(u, v). The handle already contained in Tf,g is parametrized by (u−ξ, v), where
ξ is somem-th root of unity. Denote this parametrization by ψ : D̄×D̄ → Tf,g.

Now, for any r ∈ h with coordinates (z, v) we have p(r) = (U(z, v), v)
where

zU(z, v)lvk = U(z, v)m − ε

and we assume that U(z, v) is in a small neighbourhood around some m-th
root of ε. This shows that the twisting coe�cient used to glue h is k, as stated.

To �nish the proof, we must consider the action of the monodromy on the
handles corresponding to a ∈ Ag,2. But the central disks of these handles are
given by F ′f . It follows that they are permuted cyclically.
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