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Abstract

Let f, g ∈ C{x, y} be germs of functions defining plane curve sin-
gularities without common components in (C2, 0) and let Φ(x, y, z) =
f(x, y) + zg(x, y). We give an explicit algorithm producing a plumbing
graph for the boundary of the Milnor fiber of Φ in terms of a common res-
olution for f and g. We give an example of a choice for f and g yielding a
boundary of a Milnor fiber having more than one irreducible component.

1 Introduction

It is known that the boundary of the Milnor fiber of any hypersurface singularity
in (C3, 0) is a plumbed manifold. This was stated by Michel and Pichon in
[6] and proved by separate methods by Némethi and Szilárd [12] and Michel
and Pichon [7]. A stronger statement for certain real analytic map germs was
proved by de Bobadilla and Neto [5]. As these theorems rely on resolution of
singularities, they do not easily provide an explicit description of a plumbing
graph describing the boundary. Calculations have been carried out, however
for some particular singularities and families: for Hirzebruch singularities [8],
suspensions of isolated plane curves [9] and in the many examples of [12].

In the case of a hypersurface singularity given by the equation

Φ(x, y, z) = f(x, y) + zg(x, y) = 0,

where f, g are singular germs with no common factors (but not necessarily
reduced), we give an explicit algorithm producing a plumbing graph for the
boundary of the Milnor fiber in terms of the graph associated with an embed-
ded resolution of the plane curve singularities defined by f and g. For the
explicit statement, see theorem 6.3 and the construction in section 6. Further-
more, the algorithm provides a multiplicity system associated with the function
z described in section 7. This is obtained from an explicit description of the
Milnor fiber by the author [14]. Singularities of the form f(x, y) + zg(x, y) are
closely related to the deformation theory of sandwitched singularities, see [3].
The article is organized as follows.

In section 2 we recall the results of [14] and fix notation related to the
resolution graph of f and g.

In section 3 we define plumbed manifolds and prove some useful lemmas
related to them.

In section 4 we introduce families of multiplicities and dual multiplicities as-
signed to a complex valued function on a plumbed 3-manifold, satisfying certain
conditions. In the case of a fibration over S1, these multiplicities coincide with
the multiplicities used in [4, 12].
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tially supported by the ERCEA 615655 NMST Consolidator Grant, by the Basque Government
through the BERC 2014-2017 program and by the Spanish Ministry of Economy and Com-
petitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323 during
the writing of this article.
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In section 5 we prove a useful lemma relating the negative continued fraction
expansion of a rational number to a plumbing construction.

In section 6 and section 7 we provide the details of the construction of the
plumbing graph for the boundary of the Milnor fiber of Φ and the families
of multiplicities and dual multiplicities for the coordinate function z. These
statements can be read after only reading definition 2.1.

In section 8 we provide some examples. First we give the simple plumbing
graph describing boundary of the Milnor fiber of a Ta,b,∗ singularity given by
the equation xa + yb + xyz = 0. This example is discussed in [12] 22.2.

Section 9 contains proofs of theorem 6.3 and theorem 7.1.

1.1 Notation and conventions. (i) We denote by D ⊂ C the open unit disk
and by D the closed unit disk. We also set S1 = ∂D. For any r > 0, let
Dr, Dr, S

1
r be the corresponding disks and circle with radius r.

(ii) If X is a manifold, and C ⊂ X is a submanifold of dimension d, then we
denote by [C] ∈ Hd(M,Z) the associated homology class. If X is a compact
oriented compact manifold, possibly with boundary, we denote by (·, ·)X the
intersection pairing between Hi(X,Z) and Hn−i(X, ∂X,Z), where n = dimX.
In particular, if ∂X = ∅ and i = n/2, then (·, ·)X is the intersection form on the
middle homology.

(iii) The boundary of an oriented manifold is oriented by the usual outward-
pointing-vector first rule. Note that if a codimension one submanifold N ⊂ M
splits M into two pieces, this rule induces opposite orientations according to
which piece is chosen.

(iv) A locally trivial differential fiber bundle with a chosen orientation on the
total space and the base space induces an orientation on each fiber by the
following requirement. A lifting of a positive basis of the tangent space of the
base space, followed by a positive basis of the tangent space of the fiber yields a
positive orientation of the total space. In fact, this rule induces an orientation
on the fibers, the total space or the base space, given orientations on the other
two.

Acknowledgements. I would like to thank Némethi András for suggesting
this problem to me and for the many helpful discussions we have had.

2 The Milnor fiber

In [14] the author gives a description of the Milnor fiber FΦ of the singularity
Φ(x, y, z) = f(x, y) + zg(x, y) = 0. We will now recall that result and fix some
notation.

2.1 Definition. Let φ : V → C2 be a common resolution of the functions f
and g with exceptional divisor E, decomposing into irreducible components as
E = ∪v∈WEv and denote by Γ the associated embedded resolution graph. The
set of vertices in Γ is V = W q A, where W corresponds to components of
the exceptional divisor, while elements of A are arrowheads, corresponding to
components of the strict transforms of f and g. For any a ∈ A there is a wa ∈ W
so that {wa, a} is an edge in Γ. Write A = Af qAg, where elements of Af and
Ag correspond to components of the strict transform of f and g, respectively.

2



For v ∈ V, we denote by mv and lv the multiplicities of f and g, respectively.
In particular, mv = 0 if and only if v ∈ Ag and, similarly, lv = 0 if and only if
v ∈ Af .

Define W1 = {w ∈ W |mw ≤ lw} and W2 = {w ∈ W |mw > lw}. Write
Ai = {a ∈ A |wa ∈ Wi} for i = 1, 2. Similarly, take Af,i,Ag,i ⊂ Ai so that
Af = Af,1 qAf,2 and Ag = Ag,1 qAg,2.

2.2 Definition. For w ∈ W, let Tw be a tubular neighbourhood around Ew
in V and let T = ∪w∈WTw. Set also Ti = ∪w∈Wi

Tw for i = 1, 2. For a given
0 < ε � 1, let Ff = f−1(ε) be the Milnor fiber of f , and F ′f = φ−1(Ff ) its
pullback to V . Let Tε be a small tubular neighbourhood around F ′f in T . We
also choose tubular neighbourhoods Ta ⊂ T around Ea for any a ∈ A. With
these choices fixed, choose a small tubular neighbourhood T ′ = ∪w∈WT ′w around
the exceptional divisor inside T . This is chosen small enough that T ′ ∩ Tε = ∅.

Set Tf,i = ∪a∈Af,i
Ta, and Tg,i = ∪a∈Ag,i

Ta for i = 1, 2 and let

T f,g = (T f,1 \ T ′) ∪ T ε ∪ (T 2 \ (T ′ ∪ Tg,2)).

f

g f

g

W1 W2

Figure 1: A schematic picture showing T f,g. The Milnor fiber of f is shown as
a dotted curve. The Milnor fiber of Φ is obtained by twisting along the strict
transform of g.

2.3 Definition. Let X be a four dimensional manifold with boundary and
ι : D → X an embedding of the closed disk into X such that ι sends S1 = ∂D
to ∂X and the image of D is transversal to ∂X. Then there exists a map
ψ : D ×D → X parametrizing a tubular neighbourhood of ι(D) in X so that
ψ(0, z) = ι(z) for z ∈ D and ψ(x, z) ∈ ∂X for x ∈ D and z ∈ S1 = ∂D. For
k ∈ Z, the kth twist along ι is defined as (X \ ψ(D ×D))qtk D ×D where the
glueing map tk : S1 ×D → (X \ ψ(D ×D)) is defined by tk(x, z) = ψ(x, xkz)
and is denoted by Xι,k. We also say that Xι,k is obtained from X by twisting
X k times along ι(D).

2.4 Definition. In [14], the author shows that for any a ∈ Ag, the intersection
Ea ∩ T f,g is a disjoint union of mwa

disks embedded in T f,g. Let Ff,g be the
manifold obtained from T f,g by twisting each of these disks la times for all a.

2.5 Theorem ([14]). The Milnor fiber FΦ is diffeomorphic to Ff,g. �

2.6 Definition. Let Mf,g = ∂Ff,g. We also set M ′f,g = ∂T f,g.
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3 Plumbed 3-manifolds

In this section we give an introduction to plumbed three manifods and plumbing
graphs, along with some useful properties. Throughout this text, an S1-bundle
will mean a principal S1-bundle. In particular, we assume that there is a con-
sistent choice for orientation on each fiber. In fact, all our S1-bundles will have
as base space an oriented real surface. This determines a consistent choice of
orientation on fibers as described in 1.1(iii).

We note that apart from our restriction on orientability, our definition of
a plumbed manifold is equivalent to the definition in [13]. This can be seen
from lemma 3.8. We note, however, that our construction differs slightly to the
standard one. This is explicated in remark 3.9. The main reason for this is
that in our construction in section 9, we identify the three dimensional plumbed
pieces directly, but the result can in no natural way be seen as the boundary of
a four dimensional plumbed manifold (as is the case for links of isolated surface
singularities).

3.1 Definition. A plumbed manifold is a three dimensional compact manifold
M , possibly with boundary, given as a union of submanifolds with boundary
M = ∪v∈WMv having the following properties.

(i) For each v, w ∈ W, v 6= w we have an ev,w ∈ N so that

Mv ∩Mw = qev,w

i=1 Sv,w,i,

with Sv,w,i an embedded torus M ⊃ Sv,w,i ∼= S1 × S1. Thus, Sv,w,i is a
component of ∂Mv and inherits an orientation. Since ev,w = ew,v, we can
assume that as sets, we have Sw,v,i = Sv,w,i for i = 1, . . . , ev,w.

(ii) For each v we have a compact connected surface Σv (possibly with bound-
ary) and a locally trivial S1 bundle πv : Mv → Σv. If 1 ≤ i ≤ ev,w for
some w 6= v, then Sv,w,i = π−1(Bv,w,i) where Bv,w,i ∼= S1 is a component
of the boundary of Σv.

(iii) Assume that 1 ≤ i ≤ ev,w for some v 6= w. The map

Sv,w,i → Bv,w,i ×Bw,v,i, p 7→ (πv(p), πw(p))

is a diffeomorphism.

(iv) For each v ∈ V, let Bv,1, . . . , Bv,ev be the components of ∂Σv not of the
form Bv,w,i for some w, i. We assume that a section sv,i : Bv,i → Σv to
the reduced bundle πv|Bv,i is given.

3.2 Remark. The sections sv,i are not part of the plumbing structure defined
in [13]. This means that if Mv contains a component of the boundary of M ,
then v has no well defined Euler number. In our algorithm, the final output is
a manifold without boundary, but in order to construct it we will have to glue
together manifolds along boundaries. This is done most easily by keeping track
of sections trivializing the fibration Mv → Σv over boundary components.

3.3. We orient Sv,w,i by considering it as a subset of the boundary of Mv. This
way, Sv,w,i = Sw,v,i as sets, but Sv,w,i = −Sw,v,i as oriented manifolds. We also
orient the boundary of Σw by the same rule, for any w ∈ W.
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3.4. For a closed surface Σ, the Euler number classifies the S1 bundles over Σ.
However, every S1 bundle π : M → Σ over a compact surface with nonempty
boundary is trivial. But given a trivialization, or, equivalently, a section s :
∂Σ → ∂M , over the boundary, a relative Euler number is well defined, and
invariant under homotopy of the section. This is a complete invariant in the
following sense. Let Σ be a compact surface with boundary and take two S1

bundles M,M ′ → Σ with sections s : ∂Σ → ∂M and s′ : ∂Σ → ∂M ′ and an
isomorphism of bundles ψ : M |∂Σ →M ′|∂Σ sending s to s′. Then ψ extends to
an isomorphism of bundles M → M ′ if and only if the relative Euler numbers
coincide. We will refer to the relative Euler number simply as the Euler number.

The relative Euler number is defined as follows. Let D ⊂ Σ be an open disk.
We can extend the section s : ∂Σ→ ∂M to a section s : Σ \D →M \ π−1(D).
Given an orientation preserving diffeomorphism ϕ : ∂D → S1, there is a unique
number b ∈ Z so that the twisted section sb : ∂D → π−1(∂D), x 7→ ϕ(x)bs(x)
extends over the disk D. The relative Euler number is defined as −b.

3.5 Lemma. Let M → Σ be an S1 bundle over a compact surface with bound-
ary. Let −b be its the Euler number relative to a section s : ∂Σ → M . Let
C ⊂ M be a fiber of the bundle and C ′ the image of s (as oriented submani-
folds). Then, in H1(M,Z)

− b[C] = [C ′]. (3.1)

Proof. This follows from the definition of the relative Euler number. Indeed, let
s : Σ\D →M be a section as above. It follows that [C ′]−s∗[∂D] = 0. The sign
comes from the fact that ∂D is oriented as the boundary of the disk D, which is
the opposite to the orientation inherited from the complement of the disk. Since
the section sb∗ extends over D and D is null-homotopic, the map sb : ∂D → M
is homotopic to a constant map ∂D →M . It follows that s∗[∂D] = −b[C]. �

3.6 Remark. If ∂Σ 6= ∅, then eq. 3.1 can be taken as an alternative definition
of the (relative) Euler number. Indeed, it follows from the Künneth formula
that the [C] is not a torsion element of H1(M,Z).

3.7 Definition. A plumbing graph is a decorated graph G (with no loops) with
vertex set V = W q A, where each vertex a ∈ A has a unique neighbour wa
and wa ∈ W. We refer to vertices in A as arrowhead vertices. G is decorated
as follows.

` For each w ∈ W, we have integers −bw ∈ Z and gv ∈ Z≥0. These are
referred to as the associated Euler number (or sometimes selfintersection
number) and the genus.

` Each edge e connecting two vertices in W is given a sign εe ∈ {+,−}.

In a drawing of a graph, the genus gv is written within square brackets as
[gv] to be distinguished from the Euler number. If it is omitted, it is assumed to
be 0. A negative edge will be indicated by the symbol �, whereas if indication
is omitted, the sign is assumed to be positive. An edge connecting w ∈ W and
an arrowhead a ∈ A is drawn as a dashed edge, see e.g. fig. 2.

Let M = ∪v∈WMi be a plumbed manifold and use the notation introduced
in definition 3.1. The associated plumbing graph G has vertex set V = W qA
where A = qv∈WAv, where the elements of Av correspond to the boundary
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components Bv,1, . . . , Bv,ev of Σv. It has ev,w edges connecting v and w if v, w
are distinct elements of W and a single edge connecting any a ∈ Aw with w
if w ∈ W, and no other edges. Denote by E this set of edges. For a v ∈ W,
there is an obvious correspondence between edges adjacent to v and boundary
components of Mv, and these embed in M . For each e ∈ E , let Se be the
corresponding torus embedded in M .

The genus gv is the genus of the surface Σv. The Euler number −bv is
the Euler number of the S1 bundle Mv → Σv, trivialized on the boundary
components Bv,i by the given section, and on the components Bv,w,i by any
fiber of Sv,w,i = Sw,v,i → Bw,v,i.

Any edge e ∈ E connecting v, w ∈ W corresponds to a component Sv,w,i =
Sw,v,i of the intersection Mv ∩Mw. Take fibers Cv and Cw of πv and πw, re-
spectively, contained in Sv,w,i. The sign εe is defined as the intersection number
of Cv and Cw in Sv,w,i, that is,

εe = ([Cv], [Cw])Sv,w,i .

It follows from definition that this intersection number is ±1. This sign depends
on the orientation on Sv,w,i, which, we recall, is obtained by viewing Sv,w,i as a
subset of ∂Mv.

3.8 Lemma. Let v, w be vertices connected by an edge e in a plumbing graph
associated to a plumbed manifold M . Let Cw be a fiber of πw contained in the
torus Sv,w,i corresponding to e. Then the sign εe is positive if and only if −Cw
is an oriented section to the map Sv,w,i → Bv,w,i.

Proof. Let Cv ⊂ Sv,w,i be a fiber of πv. We have εe = ([Cv], [Cw])Sv,w,i . There-
fore, if B is the oriented image of some section of πv|Sv,w,i , then it suffices to
show that ([Cv], [B])Sv,w,i

= −1. By construction, Cv and B intersect in a single
point, say x ∈ Sv,w,i, and we can assume that this intersection is transverse. Let
c, b ∈ TxSv,w,i be tangent vectors inducing positive bases of TxCv and TxBv. Let
a ∈ TxMv be an outward pointing tangent vector. By definition, (πv(a), πv(b))
is a positive basis of Tπv(x)Bv,w,i. Therefore, (a, b, c) is a positive basis of TxMv,
and so (b, c) is a positive basis of TxSv,w,i. This means that ([B], [Cv])Sv,w,i

= 1
and so ([Cv], [B])Sv,w,i

= −1. �

3.9 Remark. The above lemma may seem contrary to the usual definition
of plumbing [13, 12]. There, the authors start with S1-bundles over a closed
surfaces. The glueing of two pieces, corresponding to an edge e, is made by
removing a tubular neighbourhood around a fiber in each piece and identifying
the boundaries by switching meridians and fibers, multiplied with a sign εe. The
output of the two constructions is identical, but the submanifold B in the proof
above, is a meridian, but with the opposite orientation to that of a standard
meridian.

3.10 Example. [10, 12] Let X̃ be a smooth complex surface and let E ⊂ X̃ be
a compact normal crossing divisor. This means that E is a compact reduced
analytic subspace of pure dimension one, decomposing as E = ∪v∈VEv into
irreducible components, with the condition that each Ev is a submanifold of X̃,
that each Ev and Ew intersect transversally, and that any singularity of E is a
double point. If T ⊂ X̃ is a suitable small neighbourhood of E, then M = ∂T
is a plumbed manifold, whose plumbing graph G is given by the intersection
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matrix of E, that is, G has vertex set V, the genus gv is the genus of Ev, the
Euler number −bv is the selfintersection number (Ev, Ev), equivalently, it is the
Euler number of the normal bundle of the embedding Ev ↪→ X̃, and the number
of edges between v, w ∈ V is the cardinality |Ev ∩Ew|. Furthermore, εe = + for
any edge e.

3.11. A plumbed manifold M can be recovered from its (decorated) plumbing
graph G as follows. As before, denote by V and E the set of vertices and edges
in G, and by gv and −bv the genus and the selfintersecion number of a vertex v
and by εe the sign of an edge. For each v ∈ V, let Σv be a compact surface of
genus gv with ev +

∑
w∈V\{v} ev,w boundary components, give names Bv,w,i, for

w ∈ V \ {v} and 1 ≤ ev,w and Bv,i for 1 ≤ i ≤ ev. Let πv : Mv → Σv be an S1

bundle with sections sv,w,i and sv,i over the boundary inducing Euler number
−bv. The section sv,w,i induces a trivialization φv,w,i : S1 × S1 → π−1

v (Bv,w,i).
We then have M ∼= qv∈VMv/ ∼ where ∼ is the equivalence relation on

qv∈VMv generated by φv,w,i(θ1, θ2) ∼ φw,v,i(θ−εe2 , θ−εe1 ) where e is the ith edge
connecting v and w. The negative sign in the exponents in the glueing map is
explained by remark 3.9.

4 Multiplicities associated with complex valued functions

In this section we give a definition of multiplicities of a complex valued function
on a plumbed manifold under some restrictions (see 4.1). This definition coin-
cides with the multiplicities associated with fibred links in section 18 of [4], if
the function is a fibration over S1. These multiplicities are useful as they can
be obtained by local computation, but can be used to determine Euler numbers,
see lemma 4.3.

4.1. Let M = ∪v∈VMv be a plumbed manifold with graph G, with vertex set
V =W∪A and let ζ : M → C be a differentiable function having 0 as a regular
value. Furthermore, assume that ζ does not vanish on ∂Mv for all v ∈ W. Thus,
Nv = ζ−1(0) ∩Mv is a closed submanifold of Mv which does not intersect its
boundary. Assume also that Nv is homologous to a multiple of [Cv] in Mv, that
is, [Nv] = nv[π

−1
v (p)] for some (well defined) nv ∈ Z.

For any x ∈ Σv \ πv(Nv), there is a unique mx ∈ Z so that ζ∗([π−1(x)]) =
mx[S1] ∈ H1(C∗). This number is a locally constant function of x. In fact,
let ξ : [0, 1] → σ be a 1-chain connecting x = ξ(0) and y = ξ(1). We can
assume that ξ is an embedding, and by a small perturbation, we can assume
that the map Nv → Σ, induced by πv, is an immersion, transverse to ξ. At any
intersection point of ξ and πv(Nv), one sees thatmξ(·) changes by ±1, depending
on the sign of the intersection. In particular, if x, y ∈ ∂Σv, then ξ is a cycle
inducing an element [ξ] ∈ H1(Σv, ∂Σ1,Z). It follows from the assumptions that
we made that πv,∗([Nv]) = 0 ∈ H1(Σ,Z), and so

(πv,∗([Nv]), [ξ])Σv = 0.

It follows that for x, y ∈ ∂Σ, the number mx = my is a number which is well
defined by the map ζ; we denote it by mv.

4.2 Definition. Let ζ : M → C be as in 4.1. We refer to the families (mv)v∈V
and (nw)w∈W (defined above) as the family of multiplicities and dual family
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of multiplicities associated with ζ, respectively. In a drawing of a plumbing
graph, a multiplicity is written within parenthesis, whereas a dual multiplicity
is written in parenthesis next to an arrow emanating from the vertex.

4.3 Lemma. Let ζ : M → C be as in 4.1, and let (mv)v∈V and (nv)v∈W be
the associated families of multiplicities and dual multiplicities. Let w ∈ W. If
e ∈ Ew connects w and v, set me = mv. We then have

−bwmw +
∑
e∈Ew

εeme = nv.

Proof. Let Cw be a fiber of πw. Since Mw
∼= Σw × S1, the element [Cw] ∈

H1(Mw,Z) is nontorsion. It therefore suffices to show that(
−nw − bwmw +

∑
e∈Ew

εeme

)
[Cw] = 0.

We can assume that ζ is transversal to the submanifold with boundary R≥0 ⊂ C
so that ζ|−1

Mw
(R≥0) is a submanifold with boundary Kw in Mw. Furthermore,

we can assume that Kw is transversal to ∂Mw. This way, [∂Kw] = −[Nw] +∑
e∈Ew [Kw ∩ Se] ∈ H1(Mw,Z). Let e ∈ Ew, connecting w and v ∈ V. Assume

that the fiber Cw was chosen so that Cw ⊂ Se. Furthermore, let Cv be a fiber
of πv contained in Se if v ∈ W, otherwise, let Cv be the image of sv. It follows
from definition that

([Ke ∩ Se], [Cw])Se
= mw, ([Ke ∩ Se], [Cv])Se

= mv.

Since [Cv] and [Cw] form a basis of H1(Se,Z), and we have

([Cw], [Cw])Se = ([Cv], [Cv])Se = 0, ([Cw], [Cv])Se = εe,

we get [Ke ∩ Se] = εe(mv[Cw]−mw[Cv]). This yields

0 = [∂Ke] = −nw[Cw] +
∑
e∈Ew

εe(mv[Cw]−mw[Cv])

=

(
−nw − bwmw +

∑
e∈Ew

εemv

)
[Cw].

Here, the variable v inside the sum depends on e. The last equality follows from
lemma 3.5 �

4.4 Example. Let X̃ and E = ∪v∈VEv be as in example 3.10, and let h :
X̃ → C be a holomorphic function. Decompose the divisor of h as (h) =
(h)exc + (h)str so that (h)exc is supported on E, and (h)str has no components
with nonzero coefficient included in E. We can then write (h)exc =

∑
v∈V mvEv,

and (h)str =
∑
D nDD with nD = 0 if D = Ev for some v ∈ V. Assume that

the support of (h)str does not contain any intersection points in E, that is, if
nD 6= 0, then D ∩ Ev ∩ Ew = ∅ for v, w ∈ W, v 6= w. If T ⊂ X̃ is a small
tubular neighbourhood around E, then M = ∂T is a plumbed manifold and
h|M satisfies the conditions in 4.1. The associated family of multiplicities is
(mv)v∈W . Furthermore, the family (nv)v∈V of dual multiplicities is given as the
intersection nv = (Ev, (h)str).

Note that here we do not assume (h)str to be smooth, only that its intersec-
tion points with E lie in the regular part of E.
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5 Negative continued fractions

In this section we discuss negative continued fractions and a plumbing construc-
tion related to them. Some of the notation introduced in this section follows [2,
III.5].

5.1. Let a, b be relatively prime integers, b > 0. The fraction a/b can be written
in a unieque way as a (negative) continued fraction

a

b
= k1 −

1

k2 − 1
···− 1

ks

(5.1)

where ki ≥ 2 for i ≥ 2. Further, we have k1 ≥ 2 if and only if a > b and k1 > 0
if and only if a > 0.

5.2 Definition. The rational number a/b is called the (negative) continued
fraction associated with the sequence k1, . . . , ks and is denoted by [k1, . . . , ks].
The sequence k1, . . . , ks is called the (negative) continued fraction expansion of
the rational number a/b.

5.3. Given a/b = [k1, . . . , ks] as above, define integers µi and µ̃i for 0 ≤ i ≤ s+1
as follows. Start by setting

µ0 = 0, µ1 = 1, µ̃0 = −1, µ̃1 = 0.

Then, assuming that we have defined µj , µ̃j for 0 ≥ j ≥ i for some i > 0, define

µi+1 = kiµi − µi−1, µ̃i+1 = kiµ̃i − µ̃i−1.

Using induction, one finds∣∣∣∣µi µi+1

µ̃i µ̃i+1

∣∣∣∣ = 1, i = 0, . . . , s. (5.2)

Furthermore, the numbers µi and µ̃i are positive for i > 1 if a > 0. A simple
induction on s also proves µs+1 = a and µ̃s+1 = b.

5.4 Lemma. Let a, b be positive integers with no common factors, and let
ki, µi, µ̃i be defined as above. The manifold M = D̄×S1 is a plumbed manifold,
given as M = ∪si=1Mi where

M1 = D 1
s
× S1, Mi = (D̄ i+1

s
\D i

s
)× S1, i = 2, . . . , s.

We set Σ1 = D 1
s
and π1 : M1 → Σ1, (rt1, t2) 7→ rt1 where r ∈ R≥0 and ti ∈ S1,

as well as Σi = D̄ i
s
\D i−1

s
for i > 1 and πi : Mi → Σi, (rt1, t2) 7→ rtµi

1 t
µ̃i

2 for
i > 1. The section over S1 ⊂ Σs is given by t 7→ (tµ̃s+1 , t−µs+1). The associated
plumbing graph is shown in fig. 2.

Proof. It is clear that the given components intersect in tori. Furthermore,
eq. 5.2 gives gcd(µ̃i, µi) = 1. It follows that πi is an S1 fibration for all i.
Another consequence of eq. 5.2 is that for 1 ≤ i < s, the map πi × πi+1 :
Mi ∩ Mi+1 → S1 × S1 is a diffeomorphism and that fibers of πi and πi+1

9



−k1 −k2 −ks

Figure 2: Plumbing representation of S1 ×D.

intersect positively in the torus Mi ∩Mi+1. The same equation shows that the
map t 7→ (tµ̃s+1 , t−µs+1) is really a section:

πs(t
µ̃s+1 , t−µs+1) = tµsµ̃s+1−µ̃sµs+1 = t.

Therefore, M is a plumbed manifold with s components. What is left to show
is that the Euler number for the ith vertex, call it vi, in the graph is −ki. To see
this, consider the function ζ : M → C, (z, t) 7→ t. The function does not vanish
on M , and so the dual set of multiplicities vanish. We have parametrizations
S1 →Mi, t 7→ (rt−µ̃i , tµi) of a fiber of πi for a suitable r. Thus, the multiplicities
of ζ are given by mvi = µi, and similarly, ma = µs+1, where a is the arrowhead.
Thus, by lemma 4.3, we have −bviµi + µi−1 + µi+1 = 0 for 1 ≤ i ≤ s. Since
the same equation holds with bvi replaced with ki (and µi 6= 0), we get −bvi =
−ki. �

6 Construction

In this section we state our main result in details. We construct a plumbing
graph G from the resolution graph Γ along with the multiplicities mv and lv
of f and g. Theorem 6.3 says that this construction describes the boundary of
the Milnor fiber of the hypersurface singularity given by Φ(x, y, z) = f(x, y) +
zg(x, y).

Each of the first five steps of the algorithm is illustrated with the corre-
sponding step in example 8.2. The full output of this example can be seen in
fig. 14.

6.1 Definition. (i) Let Γ′ be a connected component of Γ1, the induced sub-
graph of Γ with vertex-set W1. Let V(Γ′) be the vertex set of Γ′ and, for
v ∈ V(Γ′), let Êv(Γ′) be the set of edges connecting v and a vertex in Af,1∪W2.
Set also Ê(Γ′) = ∪v∈V(Γ′)Êv(Γ′), and define V̂(Γ′) as the set of vertices in
Af,1 ∪ W2 adjacent to edges in Ê(Γ′). For any edge e ∈ Ê(Γ′) connecting
v ∈ V(Γ′) and w ∈ Af,1 ∪W2, set ve = v and we = w and me = gcd(mv,mw).
For v ∈ V(Γ′), let δ̂v be the number of edges connecting v and some vertex
in V(Γ′) or V̂(Γ′). Let dΓ′ = gcdv∈V(Γ′)∪V̂(Γ′)mv and define gΓ′ ,−bΓ′ by the
equations

dΓ′(2− 2gΓ′) =
∑

v∈V(Γ′)

mv(2− δ̂v) +
∑

e∈Ê(Γ′)

me, (6.1)

dΓ′(−bΓ′) =
∑

e∈Ê(Γ′)

mve lwe
−mwe

lve . (6.2)

Since dΓ′ 6= 0, these are well defined. As we will see later, we have gΓ′ ,−bΓ′ ∈ Z.
The graph GΓ′ has vertex set W(GΓ′) = {vΓ′,1, . . . , vΓ′,dΓ′}, with each vertex
decorated by the selfintersection number −bΓ′ and genus [gΓ′ ]. No two of these
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vertices are connected by an edge. Define G1 as the disjoint union of the graphs
obtained in this way.

Γ′

(58, 56)

(58, 56)

(18, 18)

(1, 0)

−270

[57]

dΓ′ = 1

 
gΓ′ = 57

−bΓ′ = −270
(54, 54)

(27, 27)

Figure 3: A connected component Γ′ of Γ1 produces one vertex. The edges in
Ê(Γ′) and vertices of V̂(Γ′) are also displayed.

(ii) Let a ∈ Af,1 and write ma/mw = [k1, . . . , ks]. The graph Ga has 2s + 1
vertices va,1,+, . . . , va,s,+, va,1,−, . . . , va,s,−, va,0. There is an edge with sign ±
connecting va,i,± and va,i+1,± for each 1 ≤ i ≤ s − 1, as well as positive edges
connecting va,0 and va,s,±. All these vertices have genus zero. The vertex
va,i,± has selfintersection −ba,i,± = ∓ki and va,0 has selfintersection number
−ba,0 = 0.

Define Gf,1 as the disjoint union of these graphs.

. . .
0

−1−2 −2

221

(1, 0) (54, 54)
1/54 = [1, 2, . . . , 2]	 . . . 	 	

Figure 4: An arrowhead a ∈ Af,1 produces a subgraph of the final output. Note
that in this case, since ma = 1, all vertices other than the one to the right blow
down. In any case, the minus signs on the lower bamboo can be removed by
plumbing calculus.

(iii) Let v1 ∈ W1 and v2 ∈ W2 be vertices of Γ connected by an edge e and
write mv2

/mv1
= [k1, . . . , ks]. The graph Ge has vertices ve,1,+, . . . , ve,s,+,

ve,1,−, . . . , ve,s,−, ve,0, each with genus zero. The vertex ve,i,± has the selfin-
tersection number −be,i,± = ∓ki and ve,0 has selfintersection be,0 = 0. We have
an edge with sign ± connecting ve,i,± and ve,i+1,±, as well as positive edges
connecting ve,s,± and ve,0.

Let Gb be the disjoint union of graphs obtained in this way.

(iv) The graph G2 is defined as follows. For each w ∈ W2, we have two vertices
vw,+, vw,− in G2 and these are all the nonarrowhead vertices of G2. They are
decorated by genus zero and have selfintersection number −bw,± = ∓bw, where
−bw is the selfintersection number of w in Γ. For any edge e connecting vertices
w,w′ ∈ W2, the vertices vw,± and vw′,± are connected by an edge with sign ±.
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(58, 56)(54, 54)

2

0
 

. . .

. . .
−2 −2−2

2 2

		 	 	

58/56 =−3

3

[2, . . . , 2, 3]

Figure 5: An edge connecting vertices from W1 and W2 induces a subgraph of
the total output of the algorithm. In example 8.2, there are two such edges.

(120, 114)
(58, 56)

(60, 56)
−1  

−2

−3

−3 −1

−2
	

	
1

2
3

Figure 6: The above construction appears twice in example 8.2.

(v) Let a ∈ Ag,2. The graph Ga has nonarrowhead vertices va,0, . . . , va,mw

where w = wa, each of genus zero. The vertex va,0 has selfintersection number
−ba,0 = 0, whereas va,i has selfintersection −ba,i = −la. For each 1 ≤ i ≤ mw

there is a negative edge connecting va,0 and va,i.

Let Gg,2 be the disjoint union of graphs obtained in this way.

(120, 114) (0, 1) ...
−1

−1
120

	

	
 0

Figure 7: Part of the algorithm corresponding to an arrowhead a ∈ Ag,2. Here,
since la = 1, we can blow down the 120 vertices to the right, ending up with a
single vertex with Euler number 120.

6.2 Definition. The graph G is the disjoint union of the graphs G1, Gf,1, Gb,
G2, Gg,2, with the following additional edges.

(i) For Γ′ ⊂ Γ1 a connected component, 1 ≤ i ≤ dΓ′ and a ∈ Af,1, connect vΓ′,i

and va,0 with me/dΓ′ negative edges, where me is as in definition 6.1(i).

(ii) Similarly, assuming that Γ′ ⊂ Γ1 is a connected component, 1 ≤ i ≤ dΓ′

and that v1 ∈ W(Γ′) and v2 ∈ W2 are connected by an edge e ∈ E(Γ). Connect
vΓ′,i and ve,0 with me/dΓ′ negative edges and connect vw,± and ve,1,± with an
edge with sign ±.

(iii) Let a ∈ Ag,2 and w = wa. The vertex va,0 is connected to both vw,+ and
vw,− by a positive edge.

12



6.3 Theorem. The boundary of the Milnor fiber of the singularity f(x, y) +
zg(x, y) = 0 at the origin is a plumbed manifold with plumbing graph G.

6.4 Remark. (i) Let a ∈ Ag,2 and assume that la = 1. In this case, the vertices
va,1, . . . , va,m, where w = wa and m = mw, blow down to simplify the graph
(see [13] for blowing down). This operation removes these vertices, and replaces
the Euler number −ba,0 = 0 with −ba,0 = m.

(ii) We can apply the operation R0(a) from [13] to the vertices vΓ′,i for a con-
nected component Γ′ ⊂ Γ1 as well as to va,i for a ∈ Ag,2 and 1 ≤ i ≤ mwa . This
way, all the edges adjacent to these vertices will be positive instead of negative.
Note, however, that this also changes the sign of the corresponding multiplicities
given in section 7.

7 A multiplicity system for z

In this section, we give multiplicities and dual multiplicities for the function z.
For simplicity, the multiplicitiy and dual multiplicity for a vertex v∗ constructed
in definition 6.1 will be denoted bym∗ and n∗. The proof of theorem 7.1 is given
in section 9.

7.1 Theorem. The restriction z|M of the coordinate function z to the boundary
M = ∂FΦ of the Milnor fiber of Φ satisfies the conditions given in 4.1. Further-
more, the associated families of multiplicities (mv)v∈V(G) and dual multiplicities
(nv)v∈W(G) are is given as follows.

(i) If Γ′ ⊂ Γ1 is a connected component, then mv = 1 and nv = 0 for v = vΓ′,i,
i = 1, . . . , dΓ′ .

(ii) Let a ∈ A1,f be an arrowhead connected to w ∈ W1 in Γ and set m̃w =
mw/ gcd(mw,ma) and m̃a = ma/ gcd(mw,ma). Write mw/ma = m̃w/m̃a =
[k1, . . . , ks] and define µi, µ̃i as in 5.1. The multiplicities of z are given by

ma,i,+ = (mw − lw)µi −maµ̃i, ma,i,− = lwµi

for i = 1, . . . , s and ma,0 = −m̃alw. The dual multiplicities for these vertices
are given by na,1,+ = ma, and 0 otherwise.

(iii) Let v1, v2 and e be as in definition 6.1(iii). Let m̃i = mvi/ gcd(mv1
,mv2

)
for i = 1, 2. Write mv2

/mv1
= m̃2/m̃1 = [k1, . . . , ks] and define µi, µ̃i for

i = 1, . . . , s as in 5.1. Then me,0 = m̃1lv2 − m̃2lv1 and

me,i,+ = (mv1
− lv1

)µi − (mv2
− lv2

)µ̃i, me,i,− = lv1
µi − lv2

µ̃i

The dual multiplicities vanish on these vertices.

(iv) Let w ∈ W2. Then mw,+ = mw−lw and mw,− = lw. The dual multiplicities
are given by nw,+ =

∑
wa=wma and nw,− = 0.

(v) Let a ∈ Ag,2 and set w = wa. Then ma,0 = −la and ma,i = 1 for i =
1, . . . ,mw. The dual multiplicities associated with va,i vanish.

7.2 Remark. Let e, v1 be as in theorem 7.1(iii). One proves that, in fact,
me,1,+ = mv1 − lv1 and me,1,− = lv1 .
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8 Examples

8.1 Example. The singularity Ta,b,∞ is the singularity at the origin of the
hypersurface given by xa + yb + xyz = 0. In the case b = 2, the boundary
of the Milnor fiber has been described in [12]. We take f(x, y) = xa + yb and
g(x, y) = xy. We will assume a, b satisfying a ≥ b ≥ 2 and a > 2. We claim that
the boundary of the Milnor fiber of this singularity is given by the plumbing
graph

a b

�

f(x, y) = xa + yb

g(x, y) = xy

Figure 8: A plumbing graph for the boundary of the Milnor fiber of the singu-
larity Ta,b,∞, xa + yb + xyz.

If b > 2, then the minimal graph representing this plumbed manifold is a
cycle having two vertices with Euler number −3, connected by two bamboos of
(−2)-vertices of length a − 3 and b − 3. If b = 2, then the minimal graph has
one vertex with Euler number −4, and a bamboo starting and ending at this
vertex, consisting of a − 3 verties with Euler number −2. In either case, all
genera vanish, and the cycle has one edge (or any odd number of edges) with
decoration −1.

Let φ : V → C2 be the minimal resolution of the plane curve fg and let Γ be
its resolution graph. Then Γ is a string with two arrowheads corresponding to g,
one on each end of the string, as well as d := gcd(a, b) arrowheads corresponding
to f . Name the nonarrowhead vertices of the graph v1, . . . , vs so that vi, vi+1

are adjacent. Let −bi be the selfintersection number associated with the vertex
vi. There is a unique j so that −bj = −1. The set Af consists of d arrowheads,
each connected to vj , whereas Ag consists of two arrowheads, one connected to
v1 and the other to vs. Write also mi, li for the multiplicities of f and g on vi.

Claim: We have m1 ≥ l1 and ms ≥ ls and mi > li for i = 2, . . . , s− 1.
In fact, using [4, Lemma 20.2], one finds mj = ab/d and lj = a/d + b/d. It

follows from our assumptions that mj− lj > 0. Now, define integers ri = mi− li
for i = 1, . . . , s and r0 = rs+1 = −1. We then have

ri−1 − biri + ri+1 = 0, i = 1, . . . , ĵ, . . . , s.

It follows easily that this sequence increases strictly from r0 = −1 to rj = mj−lj ,
and then decreases strictly from rj to rs+1 = −1. Since these are integers, the
claim follows.

We leave to the reader to show that the equality mi = li holds for i = 1 or
i = s if and only if b = 2, the case already covered by Némethi and Szilárd [12].
This can be achieved by calculating mi and li explicitly using Lemma 20.2 of
[4].

We start by showing how the above graph is obtained from the output of
the algorithm in the case when li > mi for all i. Since W = W2, the graph
G2 consists of two strings, one of them identical to Γ, the other one having
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Euler numbers with opposite signs and negative edges. In addition, we have
Ag,2 = {ax, ay}, two arrowhead vertices corresponding to the strict transform
of the factors x and y of g. As described in remark 6.4, the graph Γ can be taken
as these two strings, connected on each end by vertices with Euler number mx

and my. These are the multiplicities of f along the components on the end of
the string. It follows from [4] that these multiplicities are a and b. Furthermore,
the two strings blow down (we can blow down the vertices one by one in the
opposite order in which they appear during the process of resolving f). Each
string is replaced by an edge, the first string by a positive edge, the second one
by a negative edge. Below, we explicate the case when a = 7 and b = 5.

−4 −2 −3 −2

(0, 1) (0, 1)

−1

(1, 0)

(5, 2) (20, 7) (35, 12) (14, 5) (7, 3)

Figure 9: A resolution graph of the plane curves f(x, y) = x7 + y5 = 0 and
g(x, y) = xy, along with their multiplicities.

−4 −2 −1 −3 −2

−1
−1
−1
−1
−1
−1
−1

−1

−1

−1

−1

−1
(2)0 0(7) (12) (5) (3)

(4)(13)(3)

2 1 3 24
�� � �

�

� �

(1)
� (1)

(1)
(1)
(1)
(1)
(1)

(−1) (−1)

(1)

(1)

(1)

(1)

(1)

(23)
(1)

(9)

Figure 10: Output of the algorithm for Φ(x, y, z) = x7 + y5 + xyz.

In the case when either m1 = l1 or ms = ls, the algorithm has, in fact,
the same output. We let it suffice to clarify this principle by considering an
example. Take a = 3 and b = 2. A resolution graph Γ, decorated with the pairs
of multiplicities (mv, lv) is shown in fig. 11.

We see that W2 now only contains the vertex v2, whereas v1, v3 ∈ W1, each
providing a connected component of Γ1. We order the vertices in fig. 11 in such
a way that b1 = −2 and b3 = −3. Applying definition 6.1(i) to the component
Γ′ of Γ1, containing only the vertex v1, as well as Γ′′ containing only v3, we get

dΓ′ = 3, gΓ′ = 0, −bΓ′ = −1, dΓ′′ = 2, gΓ′′ = 0, −bΓ′′ = −1.

We get five new vertices. The edges e1 = {v1, v2} and e2 = {v2, v3} are of the
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−2 −3−1

(1, 0)

(0, 1) (0, 1)(3, 3) (2, 2)(6, 5)

Figure 11: A resolution graph of the plane curves f(x, y) = x3 + y2 = 0 and
g(x, y) = xy, along with their multiplicities.

form described in definition 6.1(iii). The five new vertices are connected to ve1,0
and ve2,0 to obtain the graph in fig. 12, which also shows the multiplicities of
the function z. After blowing down, we obtain fig. 8.

� �

−3−2 −1

−1

−1
−10 0

(1)

(1) (1)

(0) (0)

312

(3) (5) (2)

(1) −1 −1 (1)(−1) (−1)
�

�
�

�

�

(1)
(1)

Figure 12: Output of the algorithm for Φ(x, y, z) = x3 + y2 + xyz.

8.2 Example. Consider the plane curves

f(x, y) =
(
x3 + λ1y

2
) (

(x3 +$1y
2)3 + µ1x

10
)2 (

(x3 +$2y
2)3 + ν1x

10
)2
,

g(x, y) =
(
x3 + λ2y

2
)5 (

(x3 +$1y
2)3 + µ2x

10
) (

(x3 +$2y
2)3 + ν2x

10
)
,

where λi, µi, νi, $i ∈ C∗ are generic. A resolution graph is given in fig. 13.
The output of our algorithm is shown in fig. 14. The connected graph Γ′ = Γ1

consists of the three nonarrowheads to the left, yielding numerical data

dΓ′ = 1, gΓ′ = 57, −bΓ′ = −270.

Correspondingly, fig. 14 has one vertex decorated with genus 57 and Euler num-
ber −270.

The set Af,1 contains one element. The relevant data for this edge is ma = 1
and mw = 54. The negative continued fraction expansion of 1/54 consists of a
−1, followed by 53 copies of −2. As a result, we obtain the graph Gf,1 seen to
the left in fig. 14.

To the right of vΓ′,1 in fig. 14, we see the two identical components of
Gb, each consisting of a 0-vertex, and two strings obtained from the fraction
mv2

/mv1
= 58/54 = 29/27, whose negative continued fraction expansion con-

sists of 13 copies of −2, followed by a −3 (note that in fig. 14, this ±3 is to the
left of the ±2’s, the ±3 to the right belongs to G2).
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−2

−2

−3

(18, 18) (54, 54)

(1, 0)

(27, 27) −1−3

−2

(2, 0) (0, 1)

(0, 5)

(58, 56)
(120, 114)

(60, 57)

(2, 0) (0, 1)

(120, 114)

(60, 57)
−2

−1−3

(58, 56)

Figure 13: Plane curves whose branches have 1 and 2 Puiseux pairs.

To the right of Gb in fig. 14 we see the graph G2 obtained from the two
identical components of Γ2, each consisting of three vertices with Euler numbers
−3,−1,−2.

Finally, to the right in fig. 14 we find the two identical components of Gg,2.
Each component has a 0-vertex, and 120 copies of (−1)-vertices.

This graph is not in normal form in the sense of [13]. Let us apply Neumann’s
algorithm. Start by blowing down the −1- and 1-vertices on the left. This yields
new −1 and 1-vertices. Blowing down in total 106 times, all that is left of Gf,1
is a 0-vertex. We can thus apply splitting, or Neumann’s operation R6. In his
notation (p. 305-306) we have s = 2 and k1 = k2 = 2 and

k = 2gΓ′ +

s∑
j=1

(kj − 1) = 116.

As a result, the splitting induces 116 singletons with Euler number 0, and the
two identical components formed by the graphs Gb and Gg,2, as well as the four
dashed edges to the right.

As the next step, apply 0-chain absorption, or operation R3, 16 times to
each component. Note that each absorption, the new vertex has Euler number
−b− (−b) = 0, allowing us to absorb again.

This, in fact, concludes Step 1 of [13], and what is left is the graph we see
in fig. 15.

Next, apply Step 2 of [13]. This means replace the 2-vertex with a −2-
vertex, the 120-vertex with a string, consisting of 119 copies of −2-curves, and
the 0-vertex with a −3-vertex.

Steps 3-6 of Neumann’s algorithm do nothing to this output, and therefore
we have found the normal form of the output of our algorithm, seen in fig. 16.

17



. . .

−2

2

. . .2 3

1

−1
0 −1

−1

−3 −2 −2 −3

3 2 ...

# = 13

−3−2

3

−2

2

. . .

. . .

3 2

−3 −2

−1

−1

...

−2 −2−1

1 2 2

0

# = 53

# = 13

120

=

#

#

=

120

0

0

0
−1

1

. . .

. . .
-270

Gg,2

Gb

G2

G1

[57]

Gf,1

Figure 14: From left to right we see the graphs Gf,1, G1, Gb, G2 and Gg,2,
except that negative signes of edges are not marked. The reader may verify
that no negative edge decorations survive to the normal representative below.

−2

2

0

2
120

0−2
120

0
116×

Figure 15: The output of our algorithm, after applying Neumann’s Step 1 [13]
of determining the normal form.

9 Proofs

To prove theorems 6.3 and 7.1, we start by defining pieces Mv ⊂M and projec-
tions πv : Mv → Σv for all vertices v ∈ V, using the description in theorem 2.5.
From the construction, it will be clear that M = ∪v∈VMv, and that individual
pieces intersect according to the edges of G. Finally, we verify the formulas
for genera and selfintersection numbers. In fact, it will be clear that the genus
decoration is zero, except for in the case of vΓ′ , where an argument similar to
A’Campo’s formula [1] is used. Similarly as in [11, 12], nontrivial Euler num-
bers are determined using the multiplicities of z and lemma 4.3. We note that
the proof of theorem 7.1, can be carried out as soon as the projections πv are
defined. In particular, this proof does not use the Euler numbers, which are
computed using the multiplicities of z.

Proof of theorem 6.3. We start by providing setsMv for each vertex of the graph
G. We then prove that these pieces provide a plumbing structure on M with
the plumbing graph G.
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−2

−2

−2

−2 −3 ...
#

=

119 −2

−2
...
−2

−2

#

119

=· · ·
0 0

# = 116

−3

Figure 16: The normal plumbing graph for the boundary of the Milnor fiber of
the singularity f(x, y) + zg(x, y) = 0.

(i) Let X ′1 be the closure of the set

T f,g ∩ T1 \ (Tf,1 ∪ T2).

By construction, this is a closed tubular neighbourhood of

Ff,1 := Ff ∩ T1 \ (Tf,1 ∪ T2),

in particular, we have a disk bundle X ′1 → Ff,1. We can assume that the
intersection of this disk bundle with the divisor associated with g is a set of
disks. Let X1 be the four manifold obtained from X ′1 by twisting along these
disks as in definition 2.4 and let M1 ⊂ ∂X1 be the associated S1 bundle. It is
then clear that we have M1 ⊂ Mf,g, that the boundary of M1 consists of tori
and that M1 is in a natural way an S1 bundle over Ff,1.
Let Γ′ ⊂ Γ1 be a component as in definition 6.1(i). Setting

X ′Γ′ = X ′1 ∩
⋃

v∈V(Γ′)

Tv,

we obtain correspondingly XΓ′ ⊂ X1 and MΓ′ ⊂ M1. This way, MΓ′ is an S1

bundle over the surface Ff,Γ′ = Ff ∩X ′Γ′ .
Firstly, we note that the number of connected components of Ff,Γ′ is precisely
dΓ′ and that, furthermore, the monodromy permutes these components cycli-
cally. This follows from Proposition 2.20 of [11], see also 2.21 of the same article.
Secondly, the genus of the components of Ff,Γ′ is gΓ′ , satisfying eq. 6.1. This
follows from a small generalization of A’Campo’s formula [1] which gives

χ(Ff,Γ′) =
∑

v∈V(Γ′)

mv(2− δ̂v).

What is more, Ff,Γ′ has me boundary components close to the intersection of
Ev and Ewe for e ∈ Ê(Γ′). Thus, Ff,Γ′ has a total of

∑
e∈Ê(Γ′)me boundary

components.
The formula eq. 6.2 is verified below.

(ii) Let a ∈ A1,f and set w = wa. Define Ma = ∂T f,g ∩T a We have coordinates
u, v on Ta so that Ta ∼= {(u, v) | |u| ≤ 1, |v| ≤ 1} and so that Ea∩Ta and Ew∩Ta
are the vanishing sets of u and v, respectively. We can then write Ma = Ma,+∪
Ma,− ∪Ma,0 where for certain 0 < η � ε� 1, we have

Ma,+ = {(u, v) | |v| = 1, |u| ≤ 1} , Ma,− = {(u, v) | |v| = η, |u| ≤ 1}
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and Ma,0 is defined by setting

M ′a,0 = {(u, v) | |u| = 1, η ≤ |v| ≤ 1} , Ma,0 = M ′a,0 \N,

where N is an ε neighbourhood around Ff ∩ M ′a,0. The projection of this
picture via (u, v) 7→ (|u|, |v|) is shown in fig. 17. We can assume that in the

Ewa

Ea

Ma,1,+ Ma,2,+ Ma,s,+

MΓ′

. . .

Ma,0

Ma,2,−Ma,1,− Ma,s,−

Figure 17: A diagram showing what happens near Ea ∩ Ewa .

coordinates u, v, we can write f |Ta
(u, v) = umavmw . Define m̃a = ma/me and

m̃w = mw/me. We find

Ff ∩M ′a,0 =

me−1∐
j=0

{
(e(−t+j/mw)m̃w2πi, etm̃a2πi)

∣∣∣ t ∈ [0, 1]
}

In fact, we have an S1 bundle projection π′a,0 mappingM ′a,0 to an annulus by the
formula π′a,0(u, v) = um̃avm̃v . This way, Ff ∩M ′a,0 consists of me fibers of π′0,a.
In particular, we can assume that π′a,0 restricts to an S1 bundle π0,a = π′0,a|M0,a

.
We orient the fibers so that one of them is parametrized as t 7→ (t−m̃w , tm̃a),
which induces an orientation on the target space of π0,a.

By lemma 5.4, the manifold Ma,+ can be given as a plumbed manifold with
plumbing graph as in fig. 2, where [k1, . . . , ks] = ma/mw, so that the section
corresponding to the arrowhead to the right can be chosen to coincide with a
fiber ofMa,0, with the opposite orientation. Furthermore, we have an orientation
reversing diffeomorphism Ma,+ → Ma,− given by (u, v) 7→ (u, ηv). This way,
we see Ma,− as a plumbed manifold with the same plumbing graph, modified
by changing signs on all selfintersection numbers as well as edges.

At this point, we have shown that the manifold Ma is a plumbed manifold
with plumbing graph Ga, with me dashed arrows added to va,0, except we did
not specify a section corresponding to these arrowheads. Furthermore, (and
this cannot be done without the sections) we have not determined the Euler
number associated with va,0. Since M0,a is obtained by removing a tubular
neighbourhood around a fiber of the projection π′0,a, we can choose as a section
a meridian around this fiber. Note that this section is exactly a fiber of the
projection πΓ′,i for a suitable 1 ≤ i ≤ dΓ′ , where w is a vertex of the component
Γ′ of Γ1. But we can be more specific. Let ψ : S1 →Ma,+ be a parametrization
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of a fiber in the boundary component ofMa,s,+. This induces a map S1×[η, 1]→
M ′a,0 which is a global section to the fibration of M ′a,0, restricting to a global
section to the fibration ofMa,0, which again restricts to a parametrization of the
fibers of Ma,s,±, as well as a parametrization of a meridian around Ff ∩Ma,0.
This shows that with this choice of sections on the boundary, the Euler number
of the bundle Ma,0 is 0.
Finally, we note that Ma,0 intersects MΓ′ in exactly me tori, and that the
number of these tori in each component of MΓ′ is the same. It follows from the
construction that in each of these tori, a fiber of Ma,0 and a fiber from MΓ′

form an integral basis on homology. Furthermore, one verifies that an oriented
fiber of Ma,0 in such a torus is an oriented section of MΓ′ . This can be seen by
noting that both wind around Ea with multiplicity −m̃a. Therefore, these tori
yield edges with a negative sign, by lemma 3.8. These are the edges defined in
definition 6.2(i).

(iii) Let e and vi ∈ Wi be as in 6.1(iii). Let D be a disc in Ev1 with center the
intersection point of Ev1 and Ev2 corresponding to e which is a slightly bigger
than the corresponding disk in Ev1

∩ T v2 . We can add the preimage of D in
T v1
\ T ′v2

to T f,g without changing its diffeomorphism type. From here, the
proof follows similarly as in the previous case. A schematic picture is shown in
fig. 18.

MΓ′

Me,s,+

Me,1,− Me,2,− Me,s,−

Me,0

Mv2,+

. . .Me,1,+

. . .

Ev1

Ev2

Mv2,−

D
Ev1 ∩ T v2

Figure 18: A diagram showing what happens near Ev1 ∩ Ev2 .

(iv) Let w ∈ W2 and define Mw,+ as ∂Tw \ ∪vTv, where the union ∪v ranges
over v ∈ W ∪ Ag \ {w}. Similarly, define Mw,− as ∂T

′
w \ ∪vT ′v, for the same

index set for v, where we take T ′v = Tv if v ∈ A. Set Mw = Mw,+ ∪Mw,−. It
follows from construction that Mw consists of two S1 bundles over the surface
Ew with a disk removed for each neighbour in W ∪Ag \ {w}. Indeed, these are
the corresponding subsets of the boundaries of Tw and T ′w (recall definition 2.2).
These fibrations correspond to the vertices vw,±.
These fibrations extends canonically over the disks removed from Ew by taking
Tw and T ′w, and we can take a meridians around central fibers as the trivializing
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section on the boundary. It follows immediately that the two S1 bundles have
relative Euler numbers −bw,± = ∓bw. Furthermore, since Ew is a rational curve,
the two vertices vw,± have associated genus 0.
As both components of Mw are boundaries of similar tubular neighbourhoods,
they can be identified, but the inner one, i.e. the boundary of T ′w has its
orientation reversed. We will consider this part as a fibration over the same
base as the outer component. Therefore, a fiber in Mw,+ is a meridian around
Ew, whereas a fiber in Mw,− is a (relatively small) meridian around Ew with
the orientation reversed.
If w,w′ ∈ W2 are joined by an edge, it follows easily that the two components
corresponding to w intersect with those of w′ in the way as prescribed by the
resolution graph Γ.

(v) Finally, we describe what happens close to a component of the strict trans-
form of g corresponding to a ∈ Ag,2.
Let M ′a = M ′ ∩T a and Ma the corresponding twisted subset of M . Let Ma,0 =
M ∩ ∂Ta. It follows from construction that Ma fibers by a map πa,0 over the
disk Ea with ma + 1 smaller disks removed, one corresponding to T ′wa

, and ma

of them corresponding to Tε. We orient the fiber to coincide with that of a
meridian around Ea. This chooses an orientation of the base space of πa,0, the
opposite of the standard one on Ea. This bundle is trivialized in a similar way
as in (ii), yielding Euler number −ba,0 = 0. It is also clear that ga,0 = 0.
The closure of Ma \Ma,0 is an S1 bundle over Ff ∩Ta ∼= qmw

D. This gives mw

pieces Ma,1, . . . ,Ma,mw
, ordered arbitrarily. The fibers are meridians around

Ff .
We see that Ma is a plumbed manifold with plumbing graph Ga (with some
dashed arrows added, corresponding to the boundary). Using lemma 3.8, we
see that the edges between va,0 and va,i have a negative sign, whereas the edges
connecting va,0 and vw,± are positive.

In (i-v) above we have assigned subsets Mv ⊂ M to each vertex v of the
graph G constructed in definitions 6.1 and 6.2. It is clear that each piece is
connected and that each boundary components of any of the pieces are tori.
Furthermore, the components of intersection of two pieces correspond to the
edges connecting the corresponding vertices. The base space of each fibration
is a surface of the genus specified, or zero otherwise.

The only part which remains to prove is eq. 6.2. But this follows immediately
from lemma 4.3 and theorem 7.1. �

Proof of theorem 7.1. (i) Let Γ′ be as in definition 6.1(i). It follows from the
proof of Theorem 4.1(ii) in [14] that |z| is constant on MΓ′,i (and nonzero). It
follows that the dual multiplicities nΓ′,i vanish. A fiber in MΓ′,i is an oriented
meridian around Ff . The restriction of z = (f − ε)/g to such a fiber is a map
of degree 1, thus mΓ′,i = 1.

(ii) Let a ∈ A1,f as in definition 6.1(ii). We start by observing that the vanishing
set of the function z = (f−ε)/g is contained in the pieceMa,1,+. The vanishing
set of z is the Milnor fiber Ff of f . The intersection Ff ∩ ∂Ta consists of
two parts, contained in neighbourhoods around Ew ∩ ∂Ta and Ea ∩ ∂Tw. By
construction, the former is not included in Ma. The latter is homologous to
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a meridian around Ew with multiplicity mw. We can take this meridian as
Ea ∩ ∂Ta. Therefore, the dual multiplicities vanish on all vertices of Ga except
for va,1,+ and we have na,1,+ = ma.
It follows from the explicit calculations in (ii) in the proof of theorem 6.3 that
the restriction of f − ε to a fiber of Ma,0 has degree zero. Indeed, in the
coordinates u, v introduced there for the polydisk Ta, we have f |Ta

= umavmw

and a fiber in Ma,0 is parametrized in these coordinates by [0, 1] → Ta, t 7→
(e−tm̃w2πi, etm̃a2πi). Since g vanishes with order lw along Ew, and does not
vanish along Ea, it follows that the multiplicity ma,0 equals −lwm̃a.
Now, the sequence ma,i,+, i = 1, . . . , s satisfies

− ba,1,+ma,1,+ + ma,2,+ = na,+,1,
ma,i−1,+ − ba,i,+ma,i,+ + ma,i+1,+ = 0, i = 2, . . . , s− 1,
ma,s−1,+ − ba,s,+ma,s,+ = ma,0.

(9.1)
The same equations are satisfied by the sequence (lw−m̃w)µi−maµ̃i, as is easily
checked. It follows that the two sequences coincide, since the matrix associated
with this system of linear equations is negative definite. A similar argument
proves the statement for the multiplicities ma,i,−.

(iii) Let e be an edge in G connecting v1 and v2 as in definition 6.1(iii). We
start by observing that z does not vanish on Me, and so all dual multiplicities
vanish for the vertices of Ge.
Similarly as above, we find that the map f − ε restricted to a fiber Ce,0 ⊂Me,0

has degree zero, and g has degree m̃2lv1
− m̃1lv2

. It follows that me,0 = m̃1lv2
−

m̃2lv1 . Now, similar reasoning as above determines the multiplicities me,i,±.
Namely, we have linear equations

− be,1,±me,1,± + me,2,± = me,0,
me,i−1,± − be,i,±me,i,± + me,i+1,± = 0, i = 2, . . . , s− 1,
me,s−1,± − be,s,±me,s,± = mw2,±.

(9.2)
The result follows as soon as we determine the multiplicities mw2,±:

(iv) Let w ∈ W2. Above, we have determined that Cw,− is a meridian around
Ew, small with respect to ε and having the opposite orientation than the stan-
dard meridian. It follows that z = (f − ε)/g restricted to Cw,− has degree lw,
i.e. mw,− = lw. Furthermore, z does not vanish on Mw,−, thus nw,0 = 0.
On the other hand, Cw,+ is an oriented meridian around Ew, with respect to
which ε is chosen small. It follws that mw,+ = mw − lw. Furthermore, the
vanishing set of z in Mw,+ is homologous to the strict transform of f , with
multiplicities. Therefore, each a ∈ Af,2 contributes ma to nw,+, resulting in the
sum given.

(v) Let a ∈ Ag,2 and set w = wa. Similarly as in (i), we find that z does not
vanish on Ma. Therefore, na,i = 0 for i = 0, . . . ,mw. In (v) of the proof of
theorem 6.3 we found that Ca,0 is a meridian around Ea. We can assume that
the restriction of f − ε to such a meridian has degree 0. It is also clear that g
restricts to a degree −la map on such a fiber. It follows that ma,0 = −la.
For i = 1, . . . ,mw, the fiber Ca,i is a small meridian around Ff . It follows that
ma,i = 1. �
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